OcrSVTR.cpp 6.65 KB
Newer Older
Your Name's avatar
Your Name committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#include <OcrSVTR.h>
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/gpu/hip.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/quantization.hpp>
#include <migraphx/reshape2.hpp>
#include <opencv2/dnn.hpp>
#include <CommonUtility.h>
#include <Filesystem.h>
#include <SimpleLog.h>

using namespace cv::dnn;

namespace migraphxSamples
{
SVTR::SVTR():logFile(NULL)
{

}

SVTR::~SVTR()
{

    configurationFile.release();
    
}

ErrorCode SVTR::Initialize(InitializationParameterOfSVTR InitializationParameterOfSVTR)
{
    // 初始化(获取日志文件,加载配置文件等)
    ErrorCode errorCode = DoCommonInitialization(InitializationParameterOfSVTR);
    if (errorCode!=SUCCESS)
    {
        LOG_ERROR(logFile, "fail to DoCommonInitialization\n");
        return errorCode;
    }
    LOG_INFO(logFile, "success to DoCommonInitialization\n");

    // 获取配置文件参数
    FileNode netNode = configurationFile["OcrSVTR"];
    string modelPath = initializationParameter.parentPath + (string)netNode["ModelPath"];
    string dictPath = (string)netNode["DictPath"];

     // 加载模型
    if(Exists(modelPath)==false)
    {
        LOG_ERROR(logFile,"%s not exist!\n",modelPath.c_str());
        return MODEL_NOT_EXIST;
    }

    migraphx::onnx_options onnx_options;
    onnx_options.map_input_dims["x"]={1,3,48,320};
    net = migraphx::parse_onnx(modelPath, onnx_options);
    LOG_INFO(logFile,"succeed to load model: %s\n",GetFileName(modelPath).c_str());

    // 获取模型输入属性
    std::pair<std::string, migraphx::shape> inputAttribute=*(net.get_parameter_shapes().begin());
    inputName=inputAttribute.first;
    inputShape=inputAttribute.second;
    inputSize=cv::Size(inputShape.lens()[3],inputShape.lens()[2]);

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 编译模型
    migraphx::compile_options options;
    options.device_id=0;                          // 设置GPU设备,默认为0号设备
    options.offload_copy=true;                    // 设置offload_copy
    net.compile(gpuTarget,options);               
    LOG_INFO(logFile,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());

    // Run once by itself
    migraphx::parameter_map inputData;
    inputData[inputName]=migraphx::generate_argument(inputShape);
    net.eval(inputData);  

    std::ifstream in(dictPath);
    std::string line;
    if (in)
    {
        while (getline(in, line))
        {
            charactorDict.push_back(line);
        }
        charactorDict.insert(charactorDict.begin(), "#");
        charactorDict.push_back(" ");
    }
    else
    {
        std::cout << "no such label file: " << dictPath << ", exit the program..." << std::endl;
        exit(1);
    }

    // log
    LOG_INFO(logFile,"InputMaxSize:%dx%d\n",inputSize.width,inputSize.height);
    LOG_INFO(logFile,"InputName:%s\n",inputName.c_str());                        

    return SUCCESS;
}

ErrorCode SVTR::Infer(cv::Mat &img, std::string &resultsChar, float &resultsdScore, float &maxWHRatio)
{
    if(img.empty()||img.type()!=CV_8UC3)
    {
        LOG_ERROR(logFile, "image error!\n");
        return IMAGE_ERROR;
    }

    cv::Mat srcImage;
    cv::Mat resizeImg;
    img.copyTo(srcImage);

    float ratio = 1.f;
    int imgC = 3, imgH = 48;
    int resizeW;
    int imgW = int((48 * maxWHRatio));
    ratio = float(srcImage.cols) / float(srcImage.rows);
    if (ceil(imgH * ratio) > imgW)
    {
        resizeW = imgW;
    }
    else
    {
        resizeW = int(ceil(imgH * ratio));
    }
    cv::resize(srcImage, resizeImg, cv::Size(resizeW, imgH));
    cv::copyMakeBorder(resizeImg, resizeImg, 0, 0, 0,
                     int(imgW - resizeImg.cols), cv::BORDER_CONSTANT,
                     {127, 127, 127});

    resizeImg.convertTo(resizeImg, CV_32FC3, 1.0/255.0);
    std::vector<cv::Mat> bgrChannels(3);
    cv::split(resizeImg, bgrChannels);
    std::vector<float> mean = {0.485f, 0.456f, 0.406f};
    std::vector<float> scale = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
    for (auto i = 0; i < bgrChannels.size(); i++)
    {
        bgrChannels[i].convertTo(bgrChannels[i], CV_32FC1, 1.0 * scale[i],
                              (0.0 - mean[i]) * scale[i]);
    }
    cv::merge(bgrChannels, resizeImg);
    cv::Mat inputBlob = cv::dnn::blobFromImage(resizeImg);

    std::vector<std::size_t> inputShapeOfInfer={1,3,48,resizeW};

    // 输入数据
    migraphx::parameter_map inputData;
    inputData[inputName]= migraphx::argument{migraphx::shape(inputShape.type(),inputShapeOfInfer), (float*)inputBlob.data};

    // 推理
    std::vector<migraphx::argument> inferenceResults = net.eval(inputData);
    
    // 获取推理结果
    migraphx::argument result = inferenceResults[0];
    migraphx::shape outputShape = result.get_shape();
    int n2 = outputShape.lens()[1];
    int n3 = outputShape.lens()[2];
    int n = n2 * n3;
    std::vector<float> out(n);
    memcpy(out.data(),result.data(),sizeof(float)*outputShape.elements());
    out.resize(n);

    int argmaxIdx;
    int lastIndex = 0;
    float score = 0.f;
    int count = 0;
    float maxValue = 0.0f;
    for (int j = 0; j < n2; j++)
    {
        argmaxIdx = int(std::distance(&out[(j) * n3], 
                std::max_element(&out[(j) * n3], &out[(j + 1) * n3])));
        maxValue = float(*std::max_element(&out[(j) * n3], 
                &out[(j + 1) * n3]));

        if (argmaxIdx > 0 && (!(n > 0 && argmaxIdx == lastIndex))) 
            {
                score += maxValue;
                count += 1;
                resultsChar += charactorDict[argmaxIdx];
            }
        lastIndex = argmaxIdx;
    }
    resultsdScore = score / count;

    return SUCCESS;
}

ErrorCode SVTR::DoCommonInitialization(InitializationParameterOfSVTR InitializationParameterOfSVTR)
{
    initializationParameter = InitializationParameterOfSVTR;

    // 获取日志文件
    logFile=LogManager::GetInstance()->GetLogFile(initializationParameter.logName);

    // 加载配置文件
    std::string configFilePath=initializationParameter.configFilePath;
    if(!Exists(configFilePath))
    {
        LOG_ERROR(logFile, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
    }
    if(!configurationFile.open(configFilePath, FileStorage::READ))
    {
       LOG_ERROR(logFile, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(logFile, "succeed to open configuration file\n");

    // 修改父路径
    std::string &parentPath = initializationParameter.parentPath;
    if (!parentPath.empty())
    {
        if(!IsPathSeparator(parentPath[parentPath.size() - 1]))
        {
           parentPath+=PATH_SEPARATOR;
        }
    }

    return SUCCESS;

}


}