OcrSVTR.cpp 5.68 KB
Newer Older
Your Name's avatar
Your Name committed
1
#include <OcrSVTR.h>
liucong's avatar
liucong committed
2

Your Name's avatar
Your Name committed
3
4
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
liucong's avatar
liucong committed
5

Your Name's avatar
Your Name committed
6
7
8
9
10
#include <Filesystem.h>
#include <SimpleLog.h>

namespace migraphxSamples
{
liucong's avatar
liucong committed
11
SVTR::SVTR()
Your Name's avatar
Your Name committed
12
13
14
15
16
17
18
19
20
21
22
23
24
{

}

SVTR::~SVTR()
{

    configurationFile.release();
    
}

ErrorCode SVTR::Initialize(InitializationParameterOfSVTR InitializationParameterOfSVTR)
{
liucong's avatar
liucong committed
25
26
27
28
29
30
31
32
    // 读取配置文件
    std::string configFilePath=InitializationParameterOfSVTR.configFilePath;
    if(Exists(configFilePath)==false)
    {
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
    }
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
Your Name's avatar
Your Name committed
33
    {
liucong's avatar
liucong committed
34
35
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
Your Name's avatar
Your Name committed
36
    }
liucong's avatar
liucong committed
37
    LOG_INFO(stdout, "succeed to open configuration file\n");
Your Name's avatar
Your Name committed
38
39

    // 获取配置文件参数
liucong's avatar
liucong committed
40
41
42
    cv::FileNode netNode = configurationFile["OcrSVTR"];
    std::string modelPath = (std::string)netNode["ModelPath"];
    std::string dictPath = (std::string)netNode["DictPath"];
Your Name's avatar
Your Name committed
43
44
45
46

     // 加载模型
    if(Exists(modelPath)==false)
    {
liucong's avatar
liucong committed
47
        LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
Your Name's avatar
Your Name committed
48
49
50
        return MODEL_NOT_EXIST;
    }
    migraphx::onnx_options onnx_options;
liucong's avatar
liucong committed
51
    onnx_options.map_input_dims["x"]={1,3,48,320}; // 设置最大shape
Your Name's avatar
Your Name committed
52
    net = migraphx::parse_onnx(modelPath, onnx_options);
liucong's avatar
liucong committed
53
    LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());
Your Name's avatar
Your Name committed
54
55

    // 获取模型输入属性
liucong's avatar
liucong committed
56
57
58
59
60
61
62
63
    std::unordered_map<std::string, migraphx::shape> inputMap=net.get_parameter_shapes();
    inputName=inputMap.begin()->first;
    inputShape=inputMap.begin()->second;
    int N=inputShape.lens()[0];
    int C=inputShape.lens()[1];
    int H=inputShape.lens()[2];
    int W=inputShape.lens()[3];
    inputSize=cv::Size(W,H);
Your Name's avatar
Your Name committed
64
65
66
67
68
69
70

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 编译模型
    migraphx::compile_options options;
    options.device_id=0;                          // 设置GPU设备,默认为0号设备
liucong's avatar
liucong committed
71
    options.offload_copy=true;                    
Your Name's avatar
Your Name committed
72
    net.compile(gpuTarget,options);               
liucong's avatar
liucong committed
73
    LOG_INFO(stdout,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());
Your Name's avatar
Your Name committed
74

liucong's avatar
liucong committed
75
76
77
78
    // warm up
    std::unordered_map<std::string, migraphx::argument> inputData;
    inputData[inputName]=migraphx::argument{inputShape};
    net.eval(inputData);
Your Name's avatar
Your Name committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

    std::ifstream in(dictPath);
    std::string line;
    if (in)
    {
        while (getline(in, line))
        {
            charactorDict.push_back(line);
        }
        charactorDict.insert(charactorDict.begin(), "#");
        charactorDict.push_back(" ");
    }
    else
    {
        std::cout << "no such label file: " << dictPath << ", exit the program..." << std::endl;
        exit(1);
    }

    // log
liucong's avatar
liucong committed
98
99
    LOG_INFO(stdout,"InputMaxSize:%dx%d\n",inputSize.width,inputSize.height);
    LOG_INFO(stdout,"InputName:%s\n",inputName.c_str());                        
Your Name's avatar
Your Name committed
100
101
102
103
104
105
106
107

    return SUCCESS;
}

ErrorCode SVTR::Infer(cv::Mat &img, std::string &resultsChar, float &resultsdScore, float &maxWHRatio)
{
    if(img.empty()||img.type()!=CV_8UC3)
    {
liucong's avatar
liucong committed
108
        LOG_ERROR(stdout, "image error!\n");
Your Name's avatar
Your Name committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        return IMAGE_ERROR;
    }

    cv::Mat srcImage;
    cv::Mat resizeImg;
    img.copyTo(srcImage);

    float ratio = 1.f;
    int imgC = 3, imgH = 48;
    int resizeW;
    int imgW = int((48 * maxWHRatio));
    ratio = float(srcImage.cols) / float(srcImage.rows);
    if (ceil(imgH * ratio) > imgW)
    {
        resizeW = imgW;
    }
    else
    {
        resizeW = int(ceil(imgH * ratio));
    }
    cv::resize(srcImage, resizeImg, cv::Size(resizeW, imgH));
    cv::copyMakeBorder(resizeImg, resizeImg, 0, 0, 0,
                     int(imgW - resizeImg.cols), cv::BORDER_CONSTANT,
                     {127, 127, 127});

    resizeImg.convertTo(resizeImg, CV_32FC3, 1.0/255.0);
    std::vector<cv::Mat> bgrChannels(3);
    cv::split(resizeImg, bgrChannels);
    std::vector<float> mean = {0.485f, 0.456f, 0.406f};
    std::vector<float> scale = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
    for (auto i = 0; i < bgrChannels.size(); i++)
    {
        bgrChannels[i].convertTo(bgrChannels[i], CV_32FC1, 1.0 * scale[i],
                              (0.0 - mean[i]) * scale[i]);
    }
    cv::merge(bgrChannels, resizeImg);
    cv::Mat inputBlob = cv::dnn::blobFromImage(resizeImg);
    std::vector<std::size_t> inputShapeOfInfer={1,3,48,resizeW};

liucong's avatar
liucong committed
148
149
    // 创建输入数据
    std::unordered_map<std::string, migraphx::argument> inputData;
Your Name's avatar
Your Name committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    inputData[inputName]= migraphx::argument{migraphx::shape(inputShape.type(),inputShapeOfInfer), (float*)inputBlob.data};

    // 推理
    std::vector<migraphx::argument> inferenceResults = net.eval(inputData);
    
    // 获取推理结果
    migraphx::argument result = inferenceResults[0];
    migraphx::shape outputShape = result.get_shape();
    int n2 = outputShape.lens()[1];
    int n3 = outputShape.lens()[2];
    int n = n2 * n3;
    std::vector<float> out(n);
    memcpy(out.data(),result.data(),sizeof(float)*outputShape.elements());
    out.resize(n);

    int argmaxIdx;
    int lastIndex = 0;
    float score = 0.f;
    int count = 0;
    float maxValue = 0.0f;
    for (int j = 0; j < n2; j++)
    {
        argmaxIdx = int(std::distance(&out[(j) * n3], 
                std::max_element(&out[(j) * n3], &out[(j + 1) * n3])));
        maxValue = float(*std::max_element(&out[(j) * n3], 
                &out[(j + 1) * n3]));

        if (argmaxIdx > 0 && (!(n > 0 && argmaxIdx == lastIndex))) 
            {
                score += maxValue;
                count += 1;
                resultsChar += charactorDict[argmaxIdx];
            }
        lastIndex = argmaxIdx;
    }
    resultsdScore = score / count;

    return SUCCESS;
}

}