OcrSVTR.cpp 5.74 KB
Newer Older
Your Name's avatar
Your Name committed
1
2
3
4
5
6
7
8
#include <OcrSVTR.h>
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
#include <Filesystem.h>
#include <SimpleLog.h>

namespace migraphxSamples
{
liucong's avatar
liucong committed
9
SVTR::SVTR()
Your Name's avatar
Your Name committed
10
11
12
13
14
15
16
17
18
19
20
{

}

SVTR::~SVTR()
{
    configurationFile.release();
}

ErrorCode SVTR::Initialize(InitializationParameterOfSVTR InitializationParameterOfSVTR)
{
liucong's avatar
liucong committed
21
22
    // 读取配置文件
    std::string configFilePath=InitializationParameterOfSVTR.configFilePath;
liucong's avatar
liucong committed
23
    if(!Exists(configFilePath))
liucong's avatar
liucong committed
24
25
26
27
28
    {
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
    }
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
Your Name's avatar
Your Name committed
29
    {
liucong's avatar
liucong committed
30
31
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
Your Name's avatar
Your Name committed
32
    }
liucong's avatar
liucong committed
33
    LOG_INFO(stdout, "succeed to open configuration file\n");
Your Name's avatar
Your Name committed
34
35

    // 获取配置文件参数
liucong's avatar
liucong committed
36
37
38
    cv::FileNode netNode = configurationFile["OcrSVTR"];
    std::string modelPath = (std::string)netNode["ModelPath"];
    std::string dictPath = (std::string)netNode["DictPath"];
Your Name's avatar
Your Name committed
39
40

     // 加载模型
liucong's avatar
liucong committed
41
    if(!Exists(modelPath))
Your Name's avatar
Your Name committed
42
    {
liucong's avatar
liucong committed
43
        LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
Your Name's avatar
Your Name committed
44
45
46
        return MODEL_NOT_EXIST;
    }
    migraphx::onnx_options onnx_options;
liucong's avatar
liucong committed
47
    onnx_options.map_input_dims["x"]={1,3,48,320};  // 设置最大shape
Your Name's avatar
Your Name committed
48
    net = migraphx::parse_onnx(modelPath, onnx_options);
liucong's avatar
liucong committed
49
    LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());
Your Name's avatar
Your Name committed
50

liucong's avatar
liucong committed
51
52
53
54
55
    // 获取模型输入/输出节点信息
    std::unordered_map<std::string, migraphx::shape> inputs=net.get_inputs();
    std::unordered_map<std::string, migraphx::shape> outputs=net.get_outputs();
    inputName=inputs.begin()->first;
    inputShape=inputs.begin()->second;
liucong's avatar
liucong committed
56
57
58
59
60
    int N=inputShape.lens()[0];
    int C=inputShape.lens()[1];
    int H=inputShape.lens()[2];
    int W=inputShape.lens()[3];
    inputSize=cv::Size(W,H);
Your Name's avatar
Your Name committed
61
62
63
64
65
66
67

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 编译模型
    migraphx::compile_options options;
    options.device_id=0;                          // 设置GPU设备,默认为0号设备
liucong's avatar
liucong committed
68
    options.offload_copy=true;                    
Your Name's avatar
Your Name committed
69
    net.compile(gpuTarget,options);               
liucong's avatar
liucong committed
70
    LOG_INFO(stdout,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());
Your Name's avatar
Your Name committed
71

liucong's avatar
liucong committed
72
73
74
75
    // warm up
    std::unordered_map<std::string, migraphx::argument> inputData;
    inputData[inputName]=migraphx::argument{inputShape};
    net.eval(inputData);
Your Name's avatar
Your Name committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

    std::ifstream in(dictPath);
    std::string line;
    if (in)
    {
        while (getline(in, line))
        {
            charactorDict.push_back(line);
        }
        charactorDict.insert(charactorDict.begin(), "#");
        charactorDict.push_back(" ");
    }
    else
    {
        std::cout << "no such label file: " << dictPath << ", exit the program..." << std::endl;
        exit(1);
    }

    // log
liucong's avatar
liucong committed
95
96
    LOG_INFO(stdout,"InputMaxSize:%dx%d\n",inputSize.width,inputSize.height);
    LOG_INFO(stdout,"InputName:%s\n",inputName.c_str());                        
Your Name's avatar
Your Name committed
97
98
99
100
101
102
103
104

    return SUCCESS;
}

ErrorCode SVTR::Infer(cv::Mat &img, std::string &resultsChar, float &resultsdScore, float &maxWHRatio)
{
    if(img.empty()||img.type()!=CV_8UC3)
    {
liucong's avatar
liucong committed
105
        LOG_ERROR(stdout, "image error!\n");
Your Name's avatar
Your Name committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
        return IMAGE_ERROR;
    }

    cv::Mat srcImage;
    cv::Mat resizeImg;
    img.copyTo(srcImage);

    float ratio = 1.f;
    int imgC = 3, imgH = 48;
    int resizeW;
    int imgW = int((48 * maxWHRatio));
    ratio = float(srcImage.cols) / float(srcImage.rows);
    if (ceil(imgH * ratio) > imgW)
    {
        resizeW = imgW;
    }
    else
    {
        resizeW = int(ceil(imgH * ratio));
    }
    cv::resize(srcImage, resizeImg, cv::Size(resizeW, imgH));
    cv::copyMakeBorder(resizeImg, resizeImg, 0, 0, 0,
                     int(imgW - resizeImg.cols), cv::BORDER_CONSTANT,
                     {127, 127, 127});

    resizeImg.convertTo(resizeImg, CV_32FC3, 1.0/255.0);
    std::vector<cv::Mat> bgrChannels(3);
    cv::split(resizeImg, bgrChannels);
    std::vector<float> mean = {0.485f, 0.456f, 0.406f};
    std::vector<float> scale = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
    for (auto i = 0; i < bgrChannels.size(); i++)
    {
        bgrChannels[i].convertTo(bgrChannels[i], CV_32FC1, 1.0 * scale[i],
                              (0.0 - mean[i]) * scale[i]);
    }
    cv::merge(bgrChannels, resizeImg);
    cv::Mat inputBlob = cv::dnn::blobFromImage(resizeImg);
    std::vector<std::size_t> inputShapeOfInfer={1,3,48,resizeW};

liucong's avatar
liucong committed
145
146
    // 创建输入数据
    std::unordered_map<std::string, migraphx::argument> inputData;
Your Name's avatar
Your Name committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    inputData[inputName]= migraphx::argument{migraphx::shape(inputShape.type(),inputShapeOfInfer), (float*)inputBlob.data};

    // 推理
    std::vector<migraphx::argument> inferenceResults = net.eval(inputData);
    
    // 获取推理结果
    migraphx::argument result = inferenceResults[0];
    migraphx::shape outputShape = result.get_shape();
    int n2 = outputShape.lens()[1];
    int n3 = outputShape.lens()[2];
    int n = n2 * n3;
    std::vector<float> out(n);
    memcpy(out.data(),result.data(),sizeof(float)*outputShape.elements());
    out.resize(n);

    int argmaxIdx;
    int lastIndex = 0;
    float score = 0.f;
    int count = 0;
    float maxValue = 0.0f;
    for (int j = 0; j < n2; j++)
    {
        argmaxIdx = int(std::distance(&out[(j) * n3], 
                std::max_element(&out[(j) * n3], &out[(j + 1) * n3])));
        maxValue = float(*std::max_element(&out[(j) * n3], 
                &out[(j + 1) * n3]));

        if (argmaxIdx > 0 && (!(n > 0 && argmaxIdx == lastIndex))) 
            {
                score += maxValue;
                count += 1;
                resultsChar += charactorDict[argmaxIdx];
            }
        lastIndex = argmaxIdx;
    }
    resultsdScore = score / count;

    return SUCCESS;
}

}