OcrDB.cpp 16.7 KB
Newer Older
Your Name's avatar
Your Name committed
1
2
3
4
5
6
7
8
9
10
11
#include <OcrDB.h>
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
#include <Filesystem.h>
#include <SimpleLog.h>

using namespace cv::dnn;

namespace migraphxSamples
{

liucong's avatar
liucong committed
12
DB::DB()
Your Name's avatar
Your Name committed
13
14
15
16
17
18
19
20
21
22
23
24
25
{

}

DB::~DB()
{
    
    configurationFile.release();

}

ErrorCode DB::Initialize(InitializationParameterOfDB InitializationParameterOfDB)
{
liucong's avatar
liucong committed
26
27
    // 读取配置文件
    std::string configFilePath=InitializationParameterOfDB.configFilePath;
liucong's avatar
liucong committed
28
    if(!Exists(configFilePath))
Your Name's avatar
Your Name committed
29
    {
liucong's avatar
liucong committed
30
31
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
Your Name's avatar
Your Name committed
32
    }
liucong's avatar
liucong committed
33
34
35
36
37
38
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
    {
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(stdout, "succeed to open configuration file\n");
Your Name's avatar
Your Name committed
39
40

    // 获取配置文件参数
liucong's avatar
liucong committed
41
42
    cv::FileNode netNode = configurationFile["OcrDB"];
    std::string modelPath = (string)netNode["ModelPath"];
Your Name's avatar
Your Name committed
43
44
45
46
47
48
49
    dbParameter.BinaryThreshold = (float)netNode["BinaryThreshold"];
    dbParameter.BoxThreshold = (float)netNode["BoxThreshold"];
    dbParameter.UnclipRatio = (float)netNode["UnclipRatio"];
    dbParameter.LimitSideLen = (int)netNode["LimitSideLen"];
    dbParameter.ScoreMode = (string)netNode["ScoreMode"];

    // 加载模型
liucong's avatar
liucong committed
50
    if(!Exists(modelPath))
Your Name's avatar
Your Name committed
51
    {
liucong's avatar
liucong committed
52
        LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
Your Name's avatar
Your Name committed
53
54
55
        return MODEL_NOT_EXIST;
    }
    migraphx::onnx_options onnx_options;
liucong's avatar
liucong committed
56
    onnx_options.map_input_dims["x"] = {1,3,2496,2496}; // 设置最大shape
Your Name's avatar
Your Name committed
57
    net = migraphx::parse_onnx(modelPath, onnx_options);
liucong's avatar
liucong committed
58
    LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());
Your Name's avatar
Your Name committed
59

liucong's avatar
liucong committed
60
61
62
63
64
    // 获取模型输入/输出节点信息
    std::unordered_map<std::string, migraphx::shape> inputs=net.get_inputs();
    std::unordered_map<std::string, migraphx::shape> outputs=net.get_outputs();
    inputName=inputs.begin()->first;
    inputShape=inputs.begin()->second;
liucong's avatar
liucong committed
65
66
67
68
69
    int N=inputShape.lens()[0];
    int C=inputShape.lens()[1];
    int H=inputShape.lens()[2];
    int W=inputShape.lens()[3];
    inputSize=cv::Size(W,H);
Your Name's avatar
Your Name committed
70
71
72
73
74
75
76

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 编译模型
    migraphx::compile_options options;
    options.device_id=0;                          // 设置GPU设备,默认为0号设备
liucong's avatar
liucong committed
77
    options.offload_copy=true;                    
Your Name's avatar
Your Name committed
78
    net.compile(gpuTarget,options);               
liucong's avatar
liucong committed
79
    LOG_INFO(stdout,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());
Your Name's avatar
Your Name committed
80

liucong's avatar
liucong committed
81
82
83
84
    // warm up
    std::unordered_map<std::string, migraphx::argument> inputData;
    inputData[inputName]=migraphx::argument{inputShape};
    net.eval(inputData);
Your Name's avatar
Your Name committed
85
86

    // log
liucong's avatar
liucong committed
87
88
    LOG_INFO(stdout,"InputMaxSize:%dx%d\n",inputSize.width,inputSize.height);
    LOG_INFO(stdout,"InputName:%s\n",inputName.c_str());                         
Your Name's avatar
Your Name committed
89
90
91
92
93
94
95
96

    return SUCCESS;
}

ErrorCode DB::Infer(const cv::Mat &img, std::vector<cv::Mat> &imgList)
{
    if(img.empty()||img.type()!=CV_8UC3)
    {
liucong's avatar
liucong committed
97
        LOG_ERROR(stdout, "image error!\n");
Your Name's avatar
Your Name committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        return IMAGE_ERROR;
    }

    cv::Mat srcImage;
    cv::Mat resizeImg;
    img.copyTo(srcImage);

    int w = srcImage.cols;
    int h = srcImage.rows;
    float ratio = 1.f;
    int maxWH = std::max(h, w);
    if (maxWH > dbParameter.LimitSideLen)
    {
        if (h > w)
        {
            ratio = float(dbParameter.LimitSideLen) / float(h);
        }
        else
        {
            ratio = float(dbParameter.LimitSideLen) / float(w);
        }
    }  

    int resizeH = int(float(h) * ratio);
    int resizeW = int(float(w) * ratio);
    resizeH = std::max(int(round(float(resizeH) / 32) * 32), 32);
    resizeW = std::max(int(round(float(resizeW) / 32) * 32), 32);
    cv::resize(srcImage, resizeImg, cv::Size(resizeW, resizeH));

    float ratioH = float(resizeH) / float(h);
    float ratioW = float(resizeW) / float(w);

    resizeImg.convertTo(resizeImg, CV_32FC3, 1.0/255.0);
    std::vector<cv::Mat> bgrChannels(3);
    cv::split(resizeImg, bgrChannels);

    std::vector<float> mean = {0.485f, 0.456f, 0.406f};
    std::vector<float> scale = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
    for (auto i = 0; i < bgrChannels.size(); i++)
    {
        bgrChannels[i].convertTo(bgrChannels[i], CV_32FC1, 1.0 * scale[i],
                              (0.0 - mean[i]) * scale[i]);
    }
    cv::merge(bgrChannels, resizeImg);
    int rh = resizeImg.rows;
    int rw = resizeImg.cols;
    cv::Mat inputBlob;
    inputBlob = cv::dnn::blobFromImage(resizeImg);
    std::vector<std::size_t> inputShapeOfInfer={1,3,rh,rw};

liucong's avatar
liucong committed
148
149
    // 创建输入数据
    std::unordered_map<std::string, migraphx::argument> inputData;
Your Name's avatar
Your Name committed
150
151
152
153
    inputData[inputName]= migraphx::argument{migraphx::shape(inputShape.type(),inputShapeOfInfer), (float*)inputBlob.data};

    // 推理
    std::vector<migraphx::argument> inferenceResults = net.eval(inputData);
liucong's avatar
liucong committed
154
    
Your Name's avatar
Your Name committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    // 获取推理结果
    migraphx::argument result = inferenceResults[0]; 

    // 转换为vector
    migraphx::shape outputShape = result.get_shape();
    int shape[]={outputShape.lens()[0],outputShape.lens()[1],outputShape.lens()[2],outputShape.lens()[3]};
    int n2 = outputShape.lens()[2];
    int n3 = outputShape.lens()[3];
    int n = n2 * n3;
    std::vector<float> out(n);
    memcpy(out.data(),result.data(),sizeof(float)*outputShape.elements());   
    out.resize(n);
    
    std::vector<float> pred(n, 0.0);
    std::vector<unsigned char> cbuf(n, ' ');
    for (int i = 0; i < n; i++)
    {
        pred[i] = (float)(out[i]);
        cbuf[i] = (unsigned char)((out[i]) * 255);
    }

    cv::Mat cbufMap(n2, n3, CV_8UC1, (unsigned char *)cbuf.data());
    cv::Mat predMap(n2, n3, CV_32F, (float *)pred.data());
    const double threshold = dbParameter.BinaryThreshold * 255;
    const double maxvalue = 255;
    cv::Mat bitMap;
    cv::threshold(cbufMap, bitMap, threshold, maxvalue, cv::THRESH_BINARY);

    std::vector<std::vector<std::vector<int>>> boxes;
    DBPostProcessor postProcessor;
    boxes = postProcessor.BoxesFromBitmap(predMap, bitMap, dbParameter.BoxThreshold, dbParameter.UnclipRatio, dbParameter.ScoreMode);
    boxes = postProcessor.FilterTagDetRes(boxes, ratioH, ratioW, srcImage);

    std::vector<migraphxSamples::OCRPredictResult> ocrResults; 
    for (int i = 0; i < boxes.size(); i++) 
    {
        OCRPredictResult res;
        res.box = boxes[i];
        ocrResults.push_back(res);
    }
    Utility::sorted_boxes(ocrResults);

    for (int j = 0; j < ocrResults.size(); j++)
    {
        cv::Mat cropImg;
        cropImg = Utility::GetRotateCropImage(img, ocrResults[j].box);
        imgList.push_back(cropImg);
    }
}

void DBPostProcessor::GetContourArea(const std::vector<std::vector<float>> &box,
                                     float unclip_ratio, float &distance) {
  int pts_num = 4;
  float area = 0.0f;
  float dist = 0.0f;
  for (int i = 0; i < pts_num; i++) {
    area += box[i][0] * box[(i + 1) % pts_num][1] -
            box[i][1] * box[(i + 1) % pts_num][0];
    dist += sqrtf((box[i][0] - box[(i + 1) % pts_num][0]) *
                      (box[i][0] - box[(i + 1) % pts_num][0]) +
                  (box[i][1] - box[(i + 1) % pts_num][1]) *
                      (box[i][1] - box[(i + 1) % pts_num][1]));
  }
  area = fabs(float(area / 2.0));

  distance = area * unclip_ratio / dist;
}

cv::RotatedRect DBPostProcessor::UnClip(std::vector<std::vector<float>> box,
                                        const float &unclip_ratio) {
  float distance = 1.0;

  GetContourArea(box, unclip_ratio, distance);

  ClipperLib::ClipperOffset offset;
  ClipperLib::Path p;
  p << ClipperLib::IntPoint(int(box[0][0]), int(box[0][1]))
    << ClipperLib::IntPoint(int(box[1][0]), int(box[1][1]))
    << ClipperLib::IntPoint(int(box[2][0]), int(box[2][1]))
    << ClipperLib::IntPoint(int(box[3][0]), int(box[3][1]));
  offset.AddPath(p, ClipperLib::jtRound, ClipperLib::etClosedPolygon);

  ClipperLib::Paths soln;
  offset.Execute(soln, distance);
  std::vector<cv::Point2f> points;

  for (int j = 0; j < soln.size(); j++) {
    for (int i = 0; i < soln[soln.size() - 1].size(); i++) {
      points.emplace_back(soln[j][i].X, soln[j][i].Y);
    }
  }
  cv::RotatedRect res;
  if (points.size() <= 0) {
    res = cv::RotatedRect(cv::Point2f(0, 0), cv::Size2f(1, 1), 0);
  } else {
    res = cv::minAreaRect(points);
  }
  return res;
}

float **DBPostProcessor::Mat2Vec(cv::Mat mat) {
  auto **array = new float *[mat.rows];
  for (int i = 0; i < mat.rows; ++i)
    array[i] = new float[mat.cols];
  for (int i = 0; i < mat.rows; ++i) {
    for (int j = 0; j < mat.cols; ++j) {
      array[i][j] = mat.at<float>(i, j);
    }
  }

  return array;
}

std::vector<std::vector<int>>
DBPostProcessor::OrderPointsClockwise(std::vector<std::vector<int>> pts) {
  std::vector<std::vector<int>> box = pts;
  std::sort(box.begin(), box.end(), XsortInt);

  std::vector<std::vector<int>> leftmost = {box[0], box[1]};
  std::vector<std::vector<int>> rightmost = {box[2], box[3]};

  if (leftmost[0][1] > leftmost[1][1])
    std::swap(leftmost[0], leftmost[1]);

  if (rightmost[0][1] > rightmost[1][1])
    std::swap(rightmost[0], rightmost[1]);

  std::vector<std::vector<int>> rect = {leftmost[0], rightmost[0], rightmost[1],
                                        leftmost[1]};
  return rect;
}

std::vector<std::vector<float>> DBPostProcessor::Mat2Vector(cv::Mat mat) {
  std::vector<std::vector<float>> img_vec;
  std::vector<float> tmp;

  for (int i = 0; i < mat.rows; ++i) {
    tmp.clear();
    for (int j = 0; j < mat.cols; ++j) {
      tmp.push_back(mat.at<float>(i, j));
    }
    img_vec.push_back(tmp);
  }
  return img_vec;
}

bool DBPostProcessor::XsortFp32(std::vector<float> a, std::vector<float> b) {
  if (a[0] != b[0])
    return a[0] < b[0];
  return false;
}

bool DBPostProcessor::XsortInt(std::vector<int> a, std::vector<int> b) {
  if (a[0] != b[0])
    return a[0] < b[0];
  return false;
}

std::vector<std::vector<float>>
DBPostProcessor::GetMiniBoxes(cv::RotatedRect box, float &ssid) {
  ssid = std::max(box.size.width, box.size.height);

  cv::Mat points;
  cv::boxPoints(box, points);

  auto array = Mat2Vector(points);
  std::sort(array.begin(), array.end(), XsortFp32);

  std::vector<float> idx1 = array[0], idx2 = array[1], idx3 = array[2],
                     idx4 = array[3];
  if (array[3][1] <= array[2][1]) {
    idx2 = array[3];
    idx3 = array[2];
  } else {
    idx2 = array[2];
    idx3 = array[3];
  }
  if (array[1][1] <= array[0][1]) {
    idx1 = array[1];
    idx4 = array[0];
  } else {
    idx1 = array[0];
    idx4 = array[1];
  }

  array[0] = idx1;
  array[1] = idx2;
  array[2] = idx3;
  array[3] = idx4;

  return array;
}

float DBPostProcessor::PolygonScoreAcc(std::vector<cv::Point> contour,
                                       cv::Mat pred) {
  int width = pred.cols;
  int height = pred.rows;
  std::vector<float> box_x;
  std::vector<float> box_y;
  for (int i = 0; i < contour.size(); ++i) {
    box_x.push_back(contour[i].x);
    box_y.push_back(contour[i].y);
  }

  int xmin =
      clamp(int(std::floor(*(std::min_element(box_x.begin(), box_x.end())))), 0,
            width - 1);
  int xmax =
      clamp(int(std::ceil(*(std::max_element(box_x.begin(), box_x.end())))), 0,
            width - 1);
  int ymin =
      clamp(int(std::floor(*(std::min_element(box_y.begin(), box_y.end())))), 0,
            height - 1);
  int ymax =
      clamp(int(std::ceil(*(std::max_element(box_y.begin(), box_y.end())))), 0,
            height - 1);

  cv::Mat mask;
  mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1);

  cv::Point *rook_point = new cv::Point[contour.size()];

  for (int i = 0; i < contour.size(); ++i) {
    rook_point[i] = cv::Point(int(box_x[i]) - xmin, int(box_y[i]) - ymin);
  }
  const cv::Point *ppt[1] = {rook_point};
  int npt[] = {int(contour.size())};

  cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1));

  cv::Mat croppedImg;
  pred(cv::Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1))
      .copyTo(croppedImg);
  float score = cv::mean(croppedImg, mask)[0];

  delete[] rook_point;
  return score;
}

float DBPostProcessor::BoxScoreFast(std::vector<std::vector<float>> box_array,
                                    cv::Mat pred) {
  auto array = box_array;
  int width = pred.cols;
  int height = pred.rows;

  float box_x[4] = {array[0][0], array[1][0], array[2][0], array[3][0]};
  float box_y[4] = {array[0][1], array[1][1], array[2][1], array[3][1]};

  int xmin = clamp(int(std::floor(*(std::min_element(box_x, box_x + 4)))), 0,
                   width - 1);
  int xmax = clamp(int(std::ceil(*(std::max_element(box_x, box_x + 4)))), 0,
                   width - 1);
  int ymin = clamp(int(std::floor(*(std::min_element(box_y, box_y + 4)))), 0,
                   height - 1);
  int ymax = clamp(int(std::ceil(*(std::max_element(box_y, box_y + 4)))), 0,
                   height - 1);

  cv::Mat mask;
  mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1);

  cv::Point root_point[4];
  root_point[0] = cv::Point(int(array[0][0]) - xmin, int(array[0][1]) - ymin);
  root_point[1] = cv::Point(int(array[1][0]) - xmin, int(array[1][1]) - ymin);
  root_point[2] = cv::Point(int(array[2][0]) - xmin, int(array[2][1]) - ymin);
  root_point[3] = cv::Point(int(array[3][0]) - xmin, int(array[3][1]) - ymin);
  const cv::Point *ppt[1] = {root_point};
  int npt[] = {4};
  cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1));

  cv::Mat croppedImg;
  pred(cv::Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1))
      .copyTo(croppedImg);

  auto score = cv::mean(croppedImg, mask)[0];
  return score;
}

std::vector<std::vector<std::vector<int>>> DBPostProcessor::BoxesFromBitmap(
    const cv::Mat pred, const cv::Mat bitmap, const float &box_thresh,
    const float &det_db_unclip_ratio, const std::string &det_db_score_mode) {
  const int min_size = 3;
  const int max_candidates = 2000;

  int width = bitmap.cols;
  int height = bitmap.rows;

  std::vector<std::vector<cv::Point>> contours;
  std::vector<cv::Vec4i> hierarchy;

  cv::findContours(bitmap, contours, hierarchy, cv::RETR_LIST,
                   cv::CHAIN_APPROX_SIMPLE);

  int num_contours =
      contours.size() >= max_candidates ? max_candidates : contours.size();

  std::vector<std::vector<std::vector<int>>> boxes;

  for (int _i = 0; _i < num_contours; _i++) {
    if (contours[_i].size() <= 2) {
      continue;
    }
    float ssid;
    cv::RotatedRect box = cv::minAreaRect(contours[_i]);
    auto array = GetMiniBoxes(box, ssid);

    auto box_for_unclip = array;
    // end get_mini_box

    if (ssid < min_size) {
      continue;
    }

    float score;
    if (det_db_score_mode == "slow")
      /* compute using polygon*/
      score = PolygonScoreAcc(contours[_i], pred);
    else
      score = BoxScoreFast(array, pred);

    if (score < box_thresh)
      continue;

    // start for unclip
    cv::RotatedRect points = UnClip(box_for_unclip, det_db_unclip_ratio);
    if (points.size.height < 1.001 && points.size.width < 1.001) {
      continue;
    }
    // end for unclip

    cv::RotatedRect clipbox = points;
    auto cliparray = GetMiniBoxes(clipbox, ssid);

    if (ssid < min_size + 2)
      continue;

    int dest_width = pred.cols;
    int dest_height = pred.rows;
    std::vector<std::vector<int>> intcliparray;

    for (int num_pt = 0; num_pt < 4; num_pt++) {
      std::vector<int> a{int(clampf(roundf(cliparray[num_pt][0] / float(width) *
                                           float(dest_width)),
                                    0, float(dest_width))),
                         int(clampf(roundf(cliparray[num_pt][1] /
                                           float(height) * float(dest_height)),
                                    0, float(dest_height)))};
      intcliparray.push_back(a);
    }
    boxes.push_back(intcliparray);

  } // end for
  return boxes;
}

std::vector<std::vector<std::vector<int>>> DBPostProcessor::FilterTagDetRes(
    std::vector<std::vector<std::vector<int>>> boxes, float ratio_h,
    float ratio_w, cv::Mat srcimg) {
  int oriimg_h = srcimg.rows;
  int oriimg_w = srcimg.cols;

  std::vector<std::vector<std::vector<int>>> root_points;
  for (int n = 0; n < boxes.size(); n++) {
    boxes[n] = OrderPointsClockwise(boxes[n]);
    for (int m = 0; m < boxes[0].size(); m++) {
      boxes[n][m][0] /= ratio_w;
      boxes[n][m][1] /= ratio_h;

      boxes[n][m][0] = int(_min(_max(boxes[n][m][0], 0), oriimg_w - 1));
      boxes[n][m][1] = int(_min(_max(boxes[n][m][1], 0), oriimg_h - 1));
    }
  }

  for (int n = 0; n < boxes.size(); n++) {
    int rect_width, rect_height;
    rect_width = int(sqrt(pow(boxes[n][0][0] - boxes[n][1][0], 2) +
                          pow(boxes[n][0][1] - boxes[n][1][1], 2)));
    rect_height = int(sqrt(pow(boxes[n][0][0] - boxes[n][3][0], 2) +
                           pow(boxes[n][0][1] - boxes[n][3][1], 2)));
    if (rect_width <= 4 || rect_height <= 4)
      continue;
    root_points.push_back(boxes[n]);
  }
  return root_points;
}

}