OcrSVTR.cpp 6.01 KB
Newer Older
Your Name's avatar
Your Name committed
1
2
3
4
5
6
7
8
#include <OcrSVTR.h>
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
#include <Filesystem.h>
#include <SimpleLog.h>

namespace migraphxSamples
{
liucong's avatar
liucong committed
9
SVTR::SVTR()
Your Name's avatar
Your Name committed
10
11
12
13
14
15
16
17
18
19
20
21
22
{

}

SVTR::~SVTR()
{

    configurationFile.release();
    
}

ErrorCode SVTR::Initialize(InitializationParameterOfSVTR InitializationParameterOfSVTR)
{
liucong's avatar
liucong committed
23
24
25
26
27
28
29
30
    // 读取配置文件
    std::string configFilePath=InitializationParameterOfSVTR.configFilePath;
    if(Exists(configFilePath)==false)
    {
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
    }
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
Your Name's avatar
Your Name committed
31
    {
liucong's avatar
liucong committed
32
33
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
Your Name's avatar
Your Name committed
34
    }
liucong's avatar
liucong committed
35
    LOG_INFO(stdout, "succeed to open configuration file\n");
Your Name's avatar
Your Name committed
36
37

    // 获取配置文件参数
liucong's avatar
liucong committed
38
39
40
    cv::FileNode netNode = configurationFile["OcrSVTR"];
    std::string modelPath = (std::string)netNode["ModelPath"];
    std::string dictPath = (std::string)netNode["DictPath"];
Your Name's avatar
Your Name committed
41
42
43
44

     // 加载模型
    if(Exists(modelPath)==false)
    {
liucong's avatar
liucong committed
45
        LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
Your Name's avatar
Your Name committed
46
47
48
        return MODEL_NOT_EXIST;
    }
    migraphx::onnx_options onnx_options;
liucong's avatar
liucong committed
49
    onnx_options.map_input_dims["x"]={1,3,48,320}; // 设置最大shape
Your Name's avatar
Your Name committed
50
    net = migraphx::parse_onnx(modelPath, onnx_options);
liucong's avatar
liucong committed
51
    LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());
Your Name's avatar
Your Name committed
52

liucong's avatar
liucong committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    // 获取模型输入/输出节点信息
    std::cout<<"SVTR_inputs:"<<std::endl;
    std::unordered_map<std::string, migraphx::shape> inputs=net.get_inputs();
    for(auto i:inputs)
    {
        std::cout<<i.first<<":"<<i.second<<std::endl;
    }
    std::cout<<"DSVTR_outputs:"<<std::endl;
    std::unordered_map<std::string, migraphx::shape> outputs=net.get_outputs();
    for(auto i:outputs)
    {
        std::cout<<i.first<<":"<<i.second<<std::endl;
    }

    inputName=inputs.begin()->first;
    inputShape=inputs.begin()->second;
liucong's avatar
liucong committed
69
70
71
72
73
    int N=inputShape.lens()[0];
    int C=inputShape.lens()[1];
    int H=inputShape.lens()[2];
    int W=inputShape.lens()[3];
    inputSize=cv::Size(W,H);
Your Name's avatar
Your Name committed
74
75
76
77
78
79
80

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 编译模型
    migraphx::compile_options options;
    options.device_id=0;                          // 设置GPU设备,默认为0号设备
liucong's avatar
liucong committed
81
    options.offload_copy=true;                    
Your Name's avatar
Your Name committed
82
    net.compile(gpuTarget,options);               
liucong's avatar
liucong committed
83
    LOG_INFO(stdout,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());
Your Name's avatar
Your Name committed
84

liucong's avatar
liucong committed
85
86
87
88
    // warm up
    std::unordered_map<std::string, migraphx::argument> inputData;
    inputData[inputName]=migraphx::argument{inputShape};
    net.eval(inputData);
Your Name's avatar
Your Name committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

    std::ifstream in(dictPath);
    std::string line;
    if (in)
    {
        while (getline(in, line))
        {
            charactorDict.push_back(line);
        }
        charactorDict.insert(charactorDict.begin(), "#");
        charactorDict.push_back(" ");
    }
    else
    {
        std::cout << "no such label file: " << dictPath << ", exit the program..." << std::endl;
        exit(1);
    }

    // log
liucong's avatar
liucong committed
108
109
    LOG_INFO(stdout,"InputMaxSize:%dx%d\n",inputSize.width,inputSize.height);
    LOG_INFO(stdout,"InputName:%s\n",inputName.c_str());                        
Your Name's avatar
Your Name committed
110
111
112
113
114
115
116
117

    return SUCCESS;
}

ErrorCode SVTR::Infer(cv::Mat &img, std::string &resultsChar, float &resultsdScore, float &maxWHRatio)
{
    if(img.empty()||img.type()!=CV_8UC3)
    {
liucong's avatar
liucong committed
118
        LOG_ERROR(stdout, "image error!\n");
Your Name's avatar
Your Name committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        return IMAGE_ERROR;
    }

    cv::Mat srcImage;
    cv::Mat resizeImg;
    img.copyTo(srcImage);

    float ratio = 1.f;
    int imgC = 3, imgH = 48;
    int resizeW;
    int imgW = int((48 * maxWHRatio));
    ratio = float(srcImage.cols) / float(srcImage.rows);
    if (ceil(imgH * ratio) > imgW)
    {
        resizeW = imgW;
    }
    else
    {
        resizeW = int(ceil(imgH * ratio));
    }
    cv::resize(srcImage, resizeImg, cv::Size(resizeW, imgH));
    cv::copyMakeBorder(resizeImg, resizeImg, 0, 0, 0,
                     int(imgW - resizeImg.cols), cv::BORDER_CONSTANT,
                     {127, 127, 127});

    resizeImg.convertTo(resizeImg, CV_32FC3, 1.0/255.0);
    std::vector<cv::Mat> bgrChannels(3);
    cv::split(resizeImg, bgrChannels);
    std::vector<float> mean = {0.485f, 0.456f, 0.406f};
    std::vector<float> scale = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
    for (auto i = 0; i < bgrChannels.size(); i++)
    {
        bgrChannels[i].convertTo(bgrChannels[i], CV_32FC1, 1.0 * scale[i],
                              (0.0 - mean[i]) * scale[i]);
    }
    cv::merge(bgrChannels, resizeImg);
    cv::Mat inputBlob = cv::dnn::blobFromImage(resizeImg);
    std::vector<std::size_t> inputShapeOfInfer={1,3,48,resizeW};

liucong's avatar
liucong committed
158
159
    // 创建输入数据
    std::unordered_map<std::string, migraphx::argument> inputData;
Your Name's avatar
Your Name committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    inputData[inputName]= migraphx::argument{migraphx::shape(inputShape.type(),inputShapeOfInfer), (float*)inputBlob.data};

    // 推理
    std::vector<migraphx::argument> inferenceResults = net.eval(inputData);
    
    // 获取推理结果
    migraphx::argument result = inferenceResults[0];
    migraphx::shape outputShape = result.get_shape();
    int n2 = outputShape.lens()[1];
    int n3 = outputShape.lens()[2];
    int n = n2 * n3;
    std::vector<float> out(n);
    memcpy(out.data(),result.data(),sizeof(float)*outputShape.elements());
    out.resize(n);

    int argmaxIdx;
    int lastIndex = 0;
    float score = 0.f;
    int count = 0;
    float maxValue = 0.0f;
    for (int j = 0; j < n2; j++)
    {
        argmaxIdx = int(std::distance(&out[(j) * n3], 
                std::max_element(&out[(j) * n3], &out[(j + 1) * n3])));
        maxValue = float(*std::max_element(&out[(j) * n3], 
                &out[(j + 1) * n3]));

        if (argmaxIdx > 0 && (!(n > 0 && argmaxIdx == lastIndex))) 
            {
                score += maxValue;
                count += 1;
                resultsChar += charactorDict[argmaxIdx];
            }
        lastIndex = argmaxIdx;
    }
    resultsdScore = score / count;

    return SUCCESS;
}

}