predict_system.py 7.58 KB
Newer Older
sugon_cxj's avatar
sugon_cxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import sys
import subprocess

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import copy
import numpy as np
import json
import time
import logging
from PIL import Image
import tools.infer.utility as utility
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
import tools.infer.predict_cls as predict_cls
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
from tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image
logger = get_logger()


class TextSystem(object):
    def __init__(self, args):
        if not args.show_log:
            logger.setLevel(logging.INFO)

        self.text_detector = predict_det.TextDetector(args)
        self.text_recognizer = predict_rec.TextRecognizer(args)
        self.use_angle_cls = args.use_angle_cls
        self.drop_score = args.drop_score
        if self.use_angle_cls:
            self.text_classifier = predict_cls.TextClassifier(args)

        self.args = args

    def __call__(self, img, cls=True):
        ori_im = img.copy()
        dt_boxes, elapse = self.text_detector(img)

        # logger.debug("dt_boxes num : {}, elapse : {}".format(
        #     len(dt_boxes), elapse))
        if dt_boxes is None:
            return None, None
        img_crop_list = []

        dt_boxes = sorted_boxes(dt_boxes)

        for bno in range(len(dt_boxes)):
            tmp_box = copy.deepcopy(dt_boxes[bno])
            img_crop = get_rotate_crop_image(ori_im, tmp_box)
            img_crop_list.append(img_crop)
        if self.use_angle_cls and cls:
            img_crop_list, angle_list, elapse = self.text_classifier(
                img_crop_list)
            logger.debug("cls num  : {}, elapse : {}".format(
                len(img_crop_list), elapse))

        rec_res, elapse = self.text_recognizer(img_crop_list)
        # logger.debug("rec_res num  : {}, elapse : {}".format(
        #     len(rec_res), elapse))

        filter_boxes, filter_rec_res = [], []
        for box, rec_result in zip(dt_boxes, rec_res):
            text, score = rec_result
            if score >= self.drop_score:
                filter_boxes.append(box)
                filter_rec_res.append(rec_result)
        return filter_boxes, filter_rec_res


def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
        dt_boxes(array):detected text boxes with shape [4, 2]
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
        for j in range(i, 0, -1):
            if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \
                    (_boxes[j + 1][0][0] < _boxes[j][0][0]):
                tmp = _boxes[j]
                _boxes[j] = _boxes[j + 1]
                _boxes[j + 1] = tmp
            else:
                break
    return _boxes


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    image_file_list = image_file_list[args.process_id::args.total_process_num]
    text_sys = TextSystem(args)
    is_visualize = False
    font_path = args.vis_font_path
    drop_score = args.drop_score
    draw_img_save_dir = args.draw_img_save_dir
    os.makedirs(draw_img_save_dir, exist_ok=True)
    save_results = []

    # warm up
    if args.warmup:
        warmup_file_list = get_image_file_list("./warmup_images_5/")
        warmup_file_rec_list = get_image_file_list("./warmup_images_rec/")
        startwarm = time.time()
        for warmup_file in warmup_file_list:
            print(warmup_file)
            img_warm = cv2.imread(warmup_file)
            res = text_sys.text_detector(img_warm)
        for warmup_file_rec in warmup_file_rec_list:
            print(warmup_file_rec)
            img_warm_rec = cv2.imread(warmup_file_rec)
            max_batnum = 24
            min_batnum = 8
            if os.environ.get("OCR_REC_MAX_BATNUM") is not None:
                max_batnum = int(os.environ.get("OCR_REC_MAX_BATNUM"))
            if os.environ.get("OCR_REC_MIN_BATNUM") is not None:
                min_batnum = int(os.environ.get("OCR_REC_MIN_BATNUM"))
            assert max_batnum / min_batnum == int(max_batnum / min_batnum), "max_batnum must be multiple of min_batnum."
        
            for bn in range(int(max_batnum / min_batnum)):
                img_rec_list = []
                for i in range(min_batnum * (bn + 1)):
                    img_rec_list.append(img_warm_rec)
                rec_results = text_sys.text_recognizer(img_rec_list)
        elapsewarm = time.time() - startwarm
        logger.debug("warmup time:{}".format(elapsewarm))

    total_time = 0
    _st = time.time()
    for idx, image_file in enumerate(image_file_list):

        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.debug("error in loading image:{}".format(image_file))
            continue
        starttime = time.time()
        dt_boxes, rec_res = text_sys(img)
        elapse = time.time() - starttime
        total_time += elapse

        logger.debug(
            str(idx) + "  Predict time of %s: %.3fs" % (image_file, elapse))
        for text, score in rec_res:
            logger.debug("{}, {:.3f}".format(text, score))

        res = [{
            "transcription": rec_res[idx][0],
            "points": np.array(dt_boxes[idx]).astype(np.int32).tolist(),
        } for idx in range(len(dt_boxes))]
        save_pred = os.path.basename(image_file) + "\t" + json.dumps(
            res, ensure_ascii=False) + "\n"
        save_results.append(save_pred)

        if is_visualize:
            image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            boxes = dt_boxes
            txts = [rec_res[i][0] for i in range(len(rec_res))]
            scores = [rec_res[i][1] for i in range(len(rec_res))]

            draw_img = draw_ocr_box_txt(
                image,
                boxes,
                txts,
                scores,
                drop_score=drop_score,
                font_path=font_path)
            if flag:
                image_file = image_file[:-3] + "png"
            cv2.imwrite(
                os.path.join(draw_img_save_dir, os.path.basename(image_file)),
                draw_img[:, :, ::-1])
            logger.debug("The visualized image saved in {}".format(
                os.path.join(draw_img_save_dir, os.path.basename(image_file))))

    logger.info("The predict total time is {}".format(time.time() - _st))

    if args.total_process_num > 1:
        save_results_path = os.path.join(draw_img_save_dir, f"system_results_{args.process_id}.txt")
    else:
        save_results_path = os.path.join(draw_img_save_dir, "system_results.txt")

    with open(save_results_path, 'w', encoding='utf-8') as f:
        f.writelines(save_results)


if __name__ == "__main__":
    args = utility.parse_args()
    if args.use_mp:
        p_list = []
        total_process_num = args.total_process_num
        for process_id in range(total_process_num):
            cmd = [sys.executable, "-u"] + sys.argv + [
                "--process_id={}".format(process_id),
                "--use_mp={}".format(False)
            ]
            p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
            p_list.append(p)
        for p in p_list:
            p.wait()
    else:
        main(args)