predict_det.py 6.63 KB
Newer Older
sugon_cxj's avatar
sugon_cxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import sys
import paddle

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import numpy as np
import time
import sys
from scipy.spatial import distance as dist

import tools.infer.utility as utility
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
import json
logger = get_logger()


class TextDetector(object):
    def __init__(self, args):
        self.args = args
        self.det_algorithm = args.det_algorithm
        self.use_onnx = args.use_onnx
        pre_process_list = [{
            'DetResizeForSingle': None
        }, {
            'NormalizeImage': {
                'std': [0.229, 0.224, 0.225],
                'mean': [0.485, 0.456, 0.406],
                'scale': '1./255.',
                'order': 'hwc'
            }
        }, {
            'ToCHWImage': None
        }, {
            'KeepKeys': {
                'keep_keys': ['image', 'shape']
            }
        }]
        postprocess_params = {}
        if self.det_algorithm == "DB":
            postprocess_params['name'] = 'DBPostProcess'
            postprocess_params["thresh"] = args.det_db_thresh
            postprocess_params["box_thresh"] = args.det_db_box_thresh
            postprocess_params["max_candidates"] = 1000
            postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
            postprocess_params["use_dilation"] = args.use_dilation
            postprocess_params["score_mode"] = args.det_db_score_mode
        else:
            logger.info("not support det_algorithm:{}".format(self.det_algorithm))
            sys.exit(0)

        self.preprocess_op = create_operators(pre_process_list)
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor(
            args, 'det', logger)

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
        diff = np.diff(np.array(tmp), axis=1)
        rect[1] = tmp[np.argmin(diff)]
        rect[3] = tmp[np.argmax(diff)]
        return rect

    def clip_det_res(self, points, img_height, img_width):
        for pno in range(points.shape[0]):
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
            box = self.clip_det_res(box, img_height, img_width)
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
            if rect_width <= 3 or rect_height <= 3:
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

    def __call__(self, img):
        ori_im = img.copy()
        data = {'image': img}

        st = time.time()

        if self.args.benchmark:
            self.autolog.times.start()

        data = transform(data, self.preprocess_op)
        img, shape_list = data
        if img is None:
            return None, 0
        img = np.expand_dims(img, axis=0)
        shape_list = np.expand_dims(shape_list, axis=0)
        # print(img.shape)
        img = img.copy()

        self.input_tensor.copy_from_cpu(img)
        self.predictor.run()
        paddle.device.cuda.synchronize()
        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)
        if self.args.benchmark:
            self.autolog.times.stamp()

        preds = {}
        if self.det_algorithm in ['DB', 'PSE']:
            preds['maps'] = outputs[0]
        else:
            raise NotImplementedError

        post_result = self.postprocess_op(preds, shape_list)
        dt_boxes = post_result[0]['points']
        dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)

        if self.args.benchmark:
            self.autolog.times.end(stamp=True)
        et = time.time()
        return dt_boxes, et - st


if __name__ == "__main__":
    args = utility.parse_args()
    image_file_list = get_image_file_list(args.image_dir)
    text_detector = TextDetector(args)
    count = 0
    total_time = 0
    draw_img_save = "./inference_results"

    if args.warmup:
        img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
        for i in range(2):
            res = text_detector(img)

    if not os.path.exists(draw_img_save):
        os.makedirs(draw_img_save)
    save_results = []
    for image_file in image_file_list:
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        st = time.time()
        dt_boxes, _ = text_detector(img)
        elapse = time.time() - st
        if count > 0:
            total_time += elapse
        count += 1
        save_pred = os.path.basename(image_file) + "\t" + str(
            json.dumps([x.tolist() for x in dt_boxes])) + "\n"
        save_results.append(save_pred)
        logger.info(save_pred)
        logger.info("The predict time of {}: {}".format(image_file, elapse))
        src_im = utility.draw_text_det_res(dt_boxes, image_file)
        img_name_pure = os.path.split(image_file)[-1]
        img_path = os.path.join(draw_img_save,
                                "det_res_{}".format(img_name_pure))
        cv2.imwrite(img_path, src_im)
        logger.info("The visualized image saved in {}".format(img_path))

    with open(os.path.join(draw_img_save, "det_results.txt"), 'w') as f:
        f.writelines(save_results)
        f.close()
    if args.benchmark:
        text_detector.autolog.report()