optimizer.py 7.74 KB
Newer Older
sugon_cxj's avatar
sugon_cxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

from paddle import optimizer as optim


class Momentum(object):
    """
    Simple Momentum optimizer with velocity state.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

    def __init__(self,
                 learning_rate,
                 momentum,
                 weight_decay=None,
                 grad_clip=None,
                 **args):
        super(Momentum, self).__init__()
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip

    def __call__(self, model):
        train_params = [
            param for param in model.parameters() if param.trainable is True
        ]
        opt = optim.Momentum(
            learning_rate=self.learning_rate,
            momentum=self.momentum,
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            parameters=train_params)
        return opt


class Adam(object):
    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-08,
                 parameter_list=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None,
                 lazy_mode=False,
                 **kwargs):
        self.learning_rate = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.parameter_list = parameter_list
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
        self.name = name
        self.lazy_mode = lazy_mode

    def __call__(self, model):
        train_params = [
            param for param in model.parameters() if param.trainable is True
        ]
        opt = optim.Adam(
            learning_rate=self.learning_rate,
            beta1=self.beta1,
            beta2=self.beta2,
            epsilon=self.epsilon,
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            name=self.name,
            lazy_mode=self.lazy_mode,
            parameters=train_params)
        return opt


class RMSProp(object):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        rho (float) - rho value in equation.
        epsilon (float) - avoid division by zero, default is 1e-6.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

    def __init__(self,
                 learning_rate,
                 momentum=0.0,
                 rho=0.95,
                 epsilon=1e-6,
                 weight_decay=None,
                 grad_clip=None,
                 **args):
        super(RMSProp, self).__init__()
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.rho = rho
        self.epsilon = epsilon
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip

    def __call__(self, model):
        train_params = [
            param for param in model.parameters() if param.trainable is True
        ]
        opt = optim.RMSProp(
            learning_rate=self.learning_rate,
            momentum=self.momentum,
            rho=self.rho,
            epsilon=self.epsilon,
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            parameters=train_params)
        return opt


class Adadelta(object):
    def __init__(self,
                 learning_rate=0.001,
                 epsilon=1e-08,
                 rho=0.95,
                 parameter_list=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None,
                 **kwargs):
        self.learning_rate = learning_rate
        self.epsilon = epsilon
        self.rho = rho
        self.parameter_list = parameter_list
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
        self.name = name

    def __call__(self, model):
        train_params = [
            param for param in model.parameters() if param.trainable is True
        ]
        opt = optim.Adadelta(
            learning_rate=self.learning_rate,
            epsilon=self.epsilon,
            rho=self.rho,
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            name=self.name,
            parameters=train_params)
        return opt


class AdamW(object):
    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-8,
                 weight_decay=0.01,
                 multi_precision=False,
                 grad_clip=None,
                 no_weight_decay_name=None,
                 one_dim_param_no_weight_decay=False,
                 name=None,
                 lazy_mode=False,
                 **args):
        super().__init__()
        self.learning_rate = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.grad_clip = grad_clip
        self.weight_decay = 0.01 if weight_decay is None else weight_decay
        self.grad_clip = grad_clip
        self.name = name
        self.lazy_mode = lazy_mode
        self.multi_precision = multi_precision
        self.no_weight_decay_name_list = no_weight_decay_name.split(
        ) if no_weight_decay_name else []
        self.one_dim_param_no_weight_decay = one_dim_param_no_weight_decay

    def __call__(self, model):
        parameters = [
            param for param in model.parameters() if param.trainable is True
        ]

        self.no_weight_decay_param_name_list = [
            p.name for n, p in model.named_parameters()
            if any(nd in n for nd in self.no_weight_decay_name_list)
        ]

        if self.one_dim_param_no_weight_decay:
            self.no_weight_decay_param_name_list += [
                p.name for n, p in model.named_parameters() if len(p.shape) == 1
            ]

        opt = optim.AdamW(
            learning_rate=self.learning_rate,
            beta1=self.beta1,
            beta2=self.beta2,
            epsilon=self.epsilon,
            parameters=parameters,
            weight_decay=self.weight_decay,
            multi_precision=self.multi_precision,
            grad_clip=self.grad_clip,
            name=self.name,
            lazy_mode=self.lazy_mode,
            apply_decay_param_fun=self._apply_decay_param_fun)
        return opt

    def _apply_decay_param_fun(self, name):
        return name not in self.no_weight_decay_param_name_list