warp_mls.py 6.3 KB
Newer Older
sugon_cxj's avatar
sugon_cxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/RubanSeven/Text-Image-Augmentation-python/blob/master/warp_mls.py
"""

import numpy as np


class WarpMLS:
    def __init__(self, src, src_pts, dst_pts, dst_w, dst_h, trans_ratio=1.):
        self.src = src
        self.src_pts = src_pts
        self.dst_pts = dst_pts
        self.pt_count = len(self.dst_pts)
        self.dst_w = dst_w
        self.dst_h = dst_h
        self.trans_ratio = trans_ratio
        self.grid_size = 100
        self.rdx = np.zeros((self.dst_h, self.dst_w))
        self.rdy = np.zeros((self.dst_h, self.dst_w))

    @staticmethod
    def __bilinear_interp(x, y, v11, v12, v21, v22):
        return (v11 * (1 - y) + v12 * y) * (1 - x) + (v21 *
                                                      (1 - y) + v22 * y) * x

    def generate(self):
        self.calc_delta()
        return self.gen_img()

    def calc_delta(self):
        w = np.zeros(self.pt_count, dtype=np.float32)

        if self.pt_count < 2:
            return

        i = 0
        while 1:
            if self.dst_w <= i < self.dst_w + self.grid_size - 1:
                i = self.dst_w - 1
            elif i >= self.dst_w:
                break

            j = 0
            while 1:
                if self.dst_h <= j < self.dst_h + self.grid_size - 1:
                    j = self.dst_h - 1
                elif j >= self.dst_h:
                    break

                sw = 0
                swp = np.zeros(2, dtype=np.float32)
                swq = np.zeros(2, dtype=np.float32)
                new_pt = np.zeros(2, dtype=np.float32)
                cur_pt = np.array([i, j], dtype=np.float32)

                k = 0
                for k in range(self.pt_count):
                    if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]:
                        break

                    w[k] = 1. / (
                        (i - self.dst_pts[k][0]) * (i - self.dst_pts[k][0]) +
                        (j - self.dst_pts[k][1]) * (j - self.dst_pts[k][1]))

                    sw += w[k]
                    swp = swp + w[k] * np.array(self.dst_pts[k])
                    swq = swq + w[k] * np.array(self.src_pts[k])

                if k == self.pt_count - 1:
                    pstar = 1 / sw * swp
                    qstar = 1 / sw * swq

                    miu_s = 0
                    for k in range(self.pt_count):
                        if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]:
                            continue
                        pt_i = self.dst_pts[k] - pstar
                        miu_s += w[k] * np.sum(pt_i * pt_i)

                    cur_pt -= pstar
                    cur_pt_j = np.array([-cur_pt[1], cur_pt[0]])

                    for k in range(self.pt_count):
                        if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]:
                            continue

                        pt_i = self.dst_pts[k] - pstar
                        pt_j = np.array([-pt_i[1], pt_i[0]])

                        tmp_pt = np.zeros(2, dtype=np.float32)
                        tmp_pt[0] = np.sum(pt_i * cur_pt) * self.src_pts[k][0] - \
                                    np.sum(pt_j * cur_pt) * self.src_pts[k][1]
                        tmp_pt[1] = -np.sum(pt_i * cur_pt_j) * self.src_pts[k][0] + \
                                    np.sum(pt_j * cur_pt_j) * self.src_pts[k][1]
                        tmp_pt *= (w[k] / miu_s)
                        new_pt += tmp_pt

                    new_pt += qstar
                else:
                    new_pt = self.src_pts[k]

                self.rdx[j, i] = new_pt[0] - i
                self.rdy[j, i] = new_pt[1] - j

                j += self.grid_size
            i += self.grid_size

    def gen_img(self):
        src_h, src_w = self.src.shape[:2]
        dst = np.zeros_like(self.src, dtype=np.float32)

        for i in np.arange(0, self.dst_h, self.grid_size):
            for j in np.arange(0, self.dst_w, self.grid_size):
                ni = i + self.grid_size
                nj = j + self.grid_size
                w = h = self.grid_size
                if ni >= self.dst_h:
                    ni = self.dst_h - 1
                    h = ni - i + 1
                if nj >= self.dst_w:
                    nj = self.dst_w - 1
                    w = nj - j + 1

                di = np.reshape(np.arange(h), (-1, 1))
                dj = np.reshape(np.arange(w), (1, -1))
                delta_x = self.__bilinear_interp(
                    di / h, dj / w, self.rdx[i, j], self.rdx[i, nj],
                    self.rdx[ni, j], self.rdx[ni, nj])
                delta_y = self.__bilinear_interp(
                    di / h, dj / w, self.rdy[i, j], self.rdy[i, nj],
                    self.rdy[ni, j], self.rdy[ni, nj])
                nx = j + dj + delta_x * self.trans_ratio
                ny = i + di + delta_y * self.trans_ratio
                nx = np.clip(nx, 0, src_w - 1)
                ny = np.clip(ny, 0, src_h - 1)
                nxi = np.array(np.floor(nx), dtype=np.int32)
                nyi = np.array(np.floor(ny), dtype=np.int32)
                nxi1 = np.array(np.ceil(nx), dtype=np.int32)
                nyi1 = np.array(np.ceil(ny), dtype=np.int32)

                if len(self.src.shape) == 3:
                    x = np.tile(np.expand_dims(ny - nyi, axis=-1), (1, 1, 3))
                    y = np.tile(np.expand_dims(nx - nxi, axis=-1), (1, 1, 3))
                else:
                    x = ny - nyi
                    y = nx - nxi
                dst[i:i + h, j:j + w] = self.__bilinear_interp(
                    x, y, self.src[nyi, nxi], self.src[nyi, nxi1],
                    self.src[nyi1, nxi], self.src[nyi1, nxi1])

        dst = np.clip(dst, 0, 255)
        dst = np.array(dst, dtype=np.uint8)

        return dst