predict_rec.py 8.89 KB
Newer Older
sugon_cxj's avatar
sugon_cxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import sys
from PIL import Image
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import numpy as np
import math
import time
import traceback
import paddle

import tools.infer.utility as utility
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif

logger = get_logger()

class TextRecognizer(object):
    def __init__(self, args):
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
        self.rec_batch_num = args.rec_batch_num
        postprocess_params = {
            'name': 'CTCLabelDecode',
            "character_dict_path": args.rec_char_dict_path,
            "use_space_char": args.use_space_char
        }
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
            utility.create_predictor(args, 'rec', logger)
    
    def resize_norm_img_section(self, img, max_wh_ratio):
        # print("rec resize for section")
        imgC, imgH, imgW = self.rec_image_shape

        assert imgC == img.shape[2]
        
        rec_precision_level = os.environ.get("OCR_REC_PRECISION")
        max_w = imgH * 48
        # max_w = 2304
        if rec_precision_level =='0':
            imgW = max_w
        elif rec_precision_level == '1':
            imgW = int((imgH * max_wh_ratio))
            if imgW <= max_w / 2:
                imgW = max_w / 2
            else:
                imgW = max_w
        elif rec_precision_level == '2':
            imgW = int((imgH * max_wh_ratio))
            if imgW <= max_w / 4:
                imgW = max_w / 4
            elif imgW > max_w / 4 and imgW <= max_w / 2:
                imgW = max_w / 2
            elif imgW > max_w / 2 and imgW <= 3 * max_w / 4:
                imgW = 3 * max_w / 4
            else:
                imgW = max_w
        else:
            imgW = int((imgH * max_wh_ratio))
            if imgW <= max_w / 6:
                imgW = max_w / 6
            elif imgW > max_w / 6 and imgW <= max_w / 3:
                imgW = max_w / 3
            elif imgW > max_w / 3 and imgW <= max_w / 2:
                imgW = max_w / 2
            elif imgW > max_w / 2 and imgW <= 2 * max_w / 3:
                imgW = 2 * max_w / 3
            elif imgW > 2 *max_w / 3 and imgW <= 5 * max_w / 6:
                imgW = 5 * max_w / 6
            else:
                imgW = max_w

        imgW = int(imgW)
        h, w = img.shape[:2]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_num = len(img_list)
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
        # Sorting can speed up the recognition process
        indices = np.argsort(np.array(width_list))

        rec_res = [['', 0.0]] * img_num
chenxj's avatar
chenxj committed
105
106
        if img_num <= 0:
            return rec_res, 0
sugon_cxj's avatar
sugon_cxj committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        max_batnum = 24
        min_batnum = 8
        if os.environ.get("OCR_REC_MAX_BATNUM") is not None:
            max_batnum = int(os.environ.get("OCR_REC_MAX_BATNUM"))
        if os.environ.get("OCR_REC_MIN_BATNUM") is not None:
            min_batnum = int(os.environ.get("OCR_REC_MIN_BATNUM"))
        assert max_batnum / min_batnum == int(max_batnum / min_batnum), "max_batnum must be multiple of min_batnum."
        img_num_left = img_num
        img_no_count = 0
        st = time.time()
        if img_num_left > max_batnum:
            batch_num = max_batnum
            batch_num = int(batch_num)
            for beg_img_no in range(img_no_count, int(img_num_left / batch_num) * batch_num, batch_num):
                end_img_no = beg_img_no + batch_num
                norm_img_batch = []
                max_wh_ratio = 0
                for ino in range(beg_img_no, end_img_no):
                    h, w = img_list[indices[ino]].shape[0:2]
                    wh_ratio = w * 1.0 / h
                    max_wh_ratio = max(max_wh_ratio, wh_ratio)
                for ino in range(beg_img_no, end_img_no):
                    norm_img = self.resize_norm_img_section(img_list[indices[ino]], max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)

                norm_img_batch = np.concatenate(norm_img_batch, axis=0)
                norm_img_batch = norm_img_batch.copy()

                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.run()

                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
                if len(outputs) != 1:
                    preds = outputs
                else:
                    preds = outputs[0]
                rec_result = self.postprocess_op(preds)
                for rno in range(len(rec_result)):
                    rec_res[indices[beg_img_no + rno]] = rec_result[rno]
            img_no_count = int(img_num_left / batch_num) * batch_num
            img_num_left = img_num_left - int(img_num_left / batch_num) * batch_num
                    
        batch_num = math.ceil(img_num_left / min_batnum) * min_batnum
        batch_num = int(batch_num)
        Dnum = batch_num - img_num_left
        for dno in range(Dnum):
            indices = np.append(indices,img_num + dno)
            rec_res.append(['', 0.0])
        
        beg_img_no = img_no_count
        end_img_no = img_num
        norm_img_batch = []
        max_wh_ratio = 0
        for ino in range(beg_img_no, end_img_no):
            h, w = img_list[indices[ino]].shape[0:2]
            wh_ratio = w * 1.0 / h
            max_wh_ratio = max(max_wh_ratio, wh_ratio)
        for ino in range(beg_img_no, end_img_no):
            norm_img = self.resize_norm_img_section(img_list[indices[ino]], max_wh_ratio)
            norm_img = norm_img[np.newaxis, :]
            norm_img_batch.append(norm_img)

        norm_img_batch = np.concatenate(norm_img_batch)
        if norm_img_batch.shape[0] != batch_num:
            img_tmp = np.zeros((batch_num - norm_img_batch.shape[0], norm_img_batch.shape[1], norm_img_batch.shape[2], norm_img_batch.shape[3]), dtype=np.float32)
            norm_img_batch = np.concatenate([norm_img_batch, img_tmp])
        norm_img_batch = norm_img_batch.copy()

        self.input_tensor.copy_from_cpu(norm_img_batch)
        self.predictor.run()

        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)
        if len(outputs) != 1:
            preds = outputs
        else:
            preds = outputs[0]
        rec_result = self.postprocess_op(preds)
        for rno in range(len(rec_result)):
            rec_res[indices[beg_img_no + rno]] = rec_result[rno]

        return rec_res, time.time() - st


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []

    logger.info(
        "In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', "
        "if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320"
    )
    # warmup 2 times
    if args.warmup:
        img = np.random.uniform(0, 255, [48, 320, 3]).astype(np.uint8)
        for i in range(2):
            res = text_recognizer([img] * int(args.rec_batch_num))

    for image_file in image_file_list:
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
    try:
        rec_res, _ = text_recognizer(img_list)

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
    if args.benchmark:
        text_recognizer.autolog.report()


if __name__ == "__main__":
    main(utility.parse_args())