predict_cls.py 10 KB
Newer Older
sugon_cxj's avatar
sugon_cxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import copy
import numpy as np
import math
import time
import traceback

import tools.infer.utility as utility
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif

logger = get_logger()


class TextClassifier(object):
    def __init__(self, args):
        self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
        self.cls_batch_num = args.cls_batch_num
        self.cls_thresh = args.cls_thresh
        postprocess_params = {
            'name': 'ClsPostProcess',
            "label_list": args.label_list,
        }
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors, _ = \
            utility.create_predictor(args, 'cls', logger)
        self.use_onnx = args.use_onnx

    def resize_norm_img(self, img):
        imgC, imgH, imgW = self.cls_image_shape
        h = img.shape[0]
        w = img.shape[1]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        if self.cls_image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    
    def resize_norm_img_section(self, img, max_wh_ratio):
        # print("rec resize for section")
        imgC, imgH, imgW = self.cls_image_shape

        assert imgC == img.shape[2]
        
        rec_precision_level = os.environ.get("OCR_REC_PRECISION")
        max_w = imgH * 48
        # max_w = 2304
        if rec_precision_level =='0':
            imgW = max_w
        elif rec_precision_level == '1':
            imgW = int((imgH * max_wh_ratio))
            if imgW <= max_w / 2:
                imgW = max_w / 2
            else:
                imgW = max_w
        elif rec_precision_level == '2':
            imgW = int((imgH * max_wh_ratio))
            if imgW <= max_w / 4:
                imgW = max_w / 4
            elif imgW > max_w / 4 and imgW <= max_w / 2:
                imgW = max_w / 2
            elif imgW > max_w / 2 and imgW <= 3 * max_w / 4:
                imgW = 3 * max_w / 4
            else:
                imgW = max_w
        else:
            imgW = int((imgH * max_wh_ratio))
            if imgW <= max_w / 6:
                imgW = max_w / 6
            elif imgW > max_w / 6 and imgW <= max_w / 3:
                imgW = max_w / 3
            elif imgW > max_w / 3 and imgW <= max_w / 2:
                imgW = max_w / 2
            elif imgW > max_w / 2 and imgW <= 2 * max_w / 3:
                imgW = 2 * max_w / 3
            elif imgW > 2 *max_w / 3 and imgW <= 5 * max_w / 6:
                imgW = 5 * max_w / 6
            else:
                imgW = max_w

        imgW = int(imgW)
        h, w = img.shape[:2]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im
sugon_cxj's avatar
sugon_cxj committed
118
119
120
121
122
123
124
125
126
127
128
129

    def __call__(self, img_list):
        img_list = copy.deepcopy(img_list)
        img_num = len(img_list)
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
        # Sorting can speed up the cls process
        indices = np.argsort(np.array(width_list))

        cls_res = [['', 0.0]] * img_num
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        if img_num <= 0:
            return cls_res, 0
        max_batnum = 24
        min_batnum = 8
        if os.environ.get("OCR_REC_MAX_BATNUM") is not None:
            max_batnum = int(os.environ.get("OCR_REC_MAX_BATNUM"))
        if os.environ.get("OCR_REC_MIN_BATNUM") is not None:
            min_batnum = int(os.environ.get("OCR_REC_MIN_BATNUM"))
        assert max_batnum / min_batnum == int(max_batnum / min_batnum), "max_batnum must be multiple of min_batnum."
        img_num_left = img_num
        img_no_count = 0
        st = time.time()
        if img_num_left > max_batnum:
            batch_num = max_batnum
            batch_num = int(batch_num)
            for beg_img_no in range(img_no_count, int(img_num_left / batch_num) * batch_num, batch_num):
                end_img_no = beg_img_no + batch_num
                norm_img_batch = []
                max_wh_ratio = 0
                for ino in range(beg_img_no, end_img_no):
                    h, w = img_list[indices[ino]].shape[0:2]
                    wh_ratio = w * 1.0 / h
                    max_wh_ratio = max(max_wh_ratio, wh_ratio)
                for ino in range(beg_img_no, end_img_no):
                    norm_img = self.resize_norm_img_section(img_list[indices[ino]], max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)

                norm_img_batch = np.concatenate(norm_img_batch, axis=0)
                norm_img_batch = norm_img_batch.copy()

                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors, input_dict)
                    prob_out = outputs[0]
                else:
                    self.input_tensor.copy_from_cpu(norm_img_batch)
                    self.predictor.run()
                    prob_out = self.output_tensors[0].copy_to_cpu()
                    self.predictor.try_shrink_memory()
                cls_result = self.postprocess_op(prob_out)
                for rno in range(len(cls_result)):
                    label, score = cls_result[rno]
                    cls_res[indices[beg_img_no + rno]] = [label, score]
                    if '180' in label and score > self.cls_thresh:
                        img_list[indices[beg_img_no + rno]] = cv2.rotate(
                            img_list[indices[beg_img_no + rno]], 1)
            img_no_count = int(img_num_left / batch_num) * batch_num
            img_num_left = img_num_left - int(img_num_left / batch_num) * batch_num
            
        batch_num = math.ceil(img_num_left / min_batnum) * min_batnum
        batch_num = int(batch_num)
        Dnum = batch_num - img_num_left
        for dno in range(Dnum):
            indices = np.append(indices,img_num + dno)
            cls_res.append(['', 0.0])
        
        beg_img_no = img_no_count
        end_img_no = img_num
        norm_img_batch = []
        max_wh_ratio = 0
        for ino in range(beg_img_no, end_img_no):
            h, w = img_list[indices[ino]].shape[0:2]
            wh_ratio = w * 1.0 / h
            max_wh_ratio = max(max_wh_ratio, wh_ratio)
        for ino in range(beg_img_no, end_img_no):
            norm_img = self.resize_norm_img_section(img_list[indices[ino]], max_wh_ratio)
            norm_img = norm_img[np.newaxis, :]
            norm_img_batch.append(norm_img)

        norm_img_batch = np.concatenate(norm_img_batch)
        if norm_img_batch.shape[0] != batch_num:
            img_tmp = np.zeros((batch_num - norm_img_batch.shape[0], norm_img_batch.shape[1], norm_img_batch.shape[2], norm_img_batch.shape[3]), dtype=np.float32)
            norm_img_batch = np.concatenate([norm_img_batch, img_tmp])
        norm_img_batch = norm_img_batch.copy()
        
        if self.use_onnx:
            input_dict = {}
            input_dict[self.input_tensor.name] = norm_img_batch
            outputs = self.predictor.run(self.output_tensors, input_dict)
            prob_out = outputs[0]
        else:
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.run()
            prob_out = self.output_tensors[0].copy_to_cpu()
            self.predictor.try_shrink_memory()
        cls_result = self.postprocess_op(prob_out)
        for rno in range(len(cls_result)):
            label, score = cls_result[rno]
            cls_res[indices[beg_img_no + rno]] = [label, score]
            if '180' in label and score > self.cls_thresh and (beg_img_no + rno) < img_num:
                img_list[indices[beg_img_no + rno]] = cv2.rotate(
                    img_list[indices[beg_img_no + rno]], 1)
                        
        return img_list, cls_res, time.time() - st
sugon_cxj's avatar
sugon_cxj committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    text_classifier = TextClassifier(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
    try:
        img_list, cls_res, predict_time = text_classifier(img_list)
    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               cls_res[ino]))


if __name__ == "__main__":
    main(utility.parse_args())