eval.py 4.53 KB
Newer Older
sugon_cxj's avatar
sugon_cxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, __dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))

from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import load_model
import tools.program as program
chenxj's avatar
chenxj committed
18
from onnxruntime import InferenceSession
sugon_cxj's avatar
sugon_cxj committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61


def main():
    global_config = config['Global']
    # build dataloader
    valid_dataloader = build_dataloader(config, 'Eval', device, logger)

    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

    # build model
    # for rec algorithm
    if hasattr(post_process_class, 'character'):
        char_num = len(getattr(post_process_class, 'character'))
        if config['Architecture']["algorithm"] in ["Distillation",
                                                   ]:  # distillation model
            for key in config['Architecture']["Models"]:
                if config['Architecture']['Models'][key]['Head'][
                        'name'] == 'MultiHead':  # for multi head
                    out_channels_list = {}
                    if config['PostProcess'][
                            'name'] == 'DistillationSARLabelDecode':
                        char_num = char_num - 2
                    out_channels_list['CTCLabelDecode'] = char_num
                    out_channels_list['SARLabelDecode'] = char_num + 2
                    config['Architecture']['Models'][key]['Head'][
                        'out_channels_list'] = out_channels_list
                else:
                    config['Architecture']["Models"][key]["Head"][
                        'out_channels'] = char_num
        elif config['Architecture']['Head'][
                'name'] == 'MultiHead':  # for multi head
            out_channels_list = {}
            if config['PostProcess']['name'] == 'SARLabelDecode':
                char_num = char_num - 2
            out_channels_list['CTCLabelDecode'] = char_num
            out_channels_list['SARLabelDecode'] = char_num + 2
            config['Architecture']['Head'][
                'out_channels_list'] = out_channels_list
        else:  # base rec model
            config['Architecture']["Head"]['out_channels'] = char_num

chenxj's avatar
chenxj committed
62
63
64
65
66
67
68
69
70
71
72
73
    if args.use_onnx:
        pretrained_model = global_config.get('pretrained_model')
        print("pretrained_model:", pretrained_model)
        model = InferenceSession(pretrained_model, providers=[('ROCMExecutionProvider', {'device_id': '4'}),'CPUExecutionProvider'])
        # build metric
        eval_class = build_metric(config['Metric'])
        # start eval
        metric = program.eval_onnx(model, valid_dataloader, post_process_class,
                            eval_class)
        logger.info('metric eval ***************')
        for k, v in metric.items():
            logger.info('{}:{}'.format(k, v))
sugon_cxj's avatar
sugon_cxj committed
74
    else:
chenxj's avatar
chenxj committed
75
76
77
78
79
80
81
82
83
84
85
86
87
        model = build_model(config['Architecture'])
        extra_input_models = ["SRN", "NRTR", "SAR", "SEED", "SVTR"]
        extra_input = False
        if config['Architecture']['algorithm'] == 'Distillation':
            for key in config['Architecture']["Models"]:
                extra_input = extra_input or config['Architecture']['Models'][key][
                    'algorithm'] in extra_input_models
        else:
            extra_input = config['Architecture']['algorithm'] in extra_input_models
        if "model_type" in config['Architecture'].keys():
            model_type = config['Architecture']['model_type']
        else:
            model_type = None
sugon_cxj's avatar
sugon_cxj committed
88

chenxj's avatar
chenxj committed
89
90
91
92
93
94
        best_model_dict = load_model(
            config, model, model_type=config['Architecture']["model_type"])
        if len(best_model_dict):
            logger.info('metric in ckpt ***************')
            for k, v in best_model_dict.items():
                logger.info('{}:{}'.format(k, v))
sugon_cxj's avatar
sugon_cxj committed
95

chenxj's avatar
chenxj committed
96
97
98
99
100
101
102
103
        # build metric
        eval_class = build_metric(config['Metric'])
        # start eval
        metric = program.eval(model, valid_dataloader, post_process_class,
                            eval_class, model_type, extra_input)
        logger.info('metric eval ***************')
        for k, v in metric.items():
            logger.info('{}:{}'.format(k, v))
sugon_cxj's avatar
sugon_cxj committed
104
105
106


if __name__ == '__main__':
chenxj's avatar
chenxj committed
107
    config, device, logger, vdl_writer, args = program.preprocess()
sugon_cxj's avatar
sugon_cxj committed
108
    main()