utility.py 16.4 KB
Newer Older
sugon_cxj's avatar
sugon_cxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import argparse
import os
import sys
import platform
import cv2
import numpy as np
import paddle
from PIL import Image, ImageDraw, ImageFont
import math
from paddle import inference
import time
from ppocr.utils.logging import get_logger


def str2bool(v):
    return v.lower() in ("true", "t", "1")


def init_args():
    parser = argparse.ArgumentParser()
    # params for prediction engine
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--use_xpu", type=str2bool, default=False)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--min_subgraph_size", type=int, default=15)
    parser.add_argument("--precision", type=str, default="fp32")
    parser.add_argument("--gpu_mem", type=int, default=500)

    # params for text detector
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')

    # DB parmas
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
    parser.add_argument("--max_batch_size", type=int, default=10)
    parser.add_argument("--use_dilation", type=str2bool, default=False)
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
    parser.add_argument("--vis_seg_map", type=str2bool, default=False)

    # params for text recognizer
    parser.add_argument("--rec_algorithm", type=str, default='SVTR_LCNet')
    parser.add_argument("--rec_model_dir", type=str)
    parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320")
    parser.add_argument("--rec_batch_num", type=int, default=6)
    parser.add_argument("--max_text_length", type=int, default=25)
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
    parser.add_argument("--drop_score", type=float, default=0.5)

    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
    parser.add_argument("--cls_batch_num", type=int, default=6)
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
    parser.add_argument("--cpu_threads", type=int, default=10)
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
    parser.add_argument("--warmup", type=str2bool, default=False)

    #
    parser.add_argument(
        "--draw_img_save_dir", type=str, default="./inference_results")
    parser.add_argument("--save_crop_res", type=str2bool, default=False)
    parser.add_argument("--crop_res_save_dir", type=str, default="./output")

    # multi-process
    parser.add_argument("--use_mp", type=str2bool, default=False)
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)

    parser.add_argument("--benchmark", type=str2bool, default=False)
    parser.add_argument("--save_log_path", type=str, default="./log_output/")

    parser.add_argument("--show_log", type=str2bool, default=True)
    parser.add_argument("--use_onnx", type=str2bool, default=False)
    return parser


def parse_args():
    parser = init_args()
    return parser.parse_args()


def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
    else:
        model_dir = args.rec_model_dir

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    if args.use_onnx:
        import onnxruntime as ort
        model_file_path = model_dir
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        sess = ort.InferenceSession(model_file_path, providers=[('ROCMExecutionProvider', {'device_id': '4'}),'CPUExecutionProvider'])
        return sess, sess.get_inputs()[0], None, None
    
    else:
        model_file_path = model_dir + "/inference.pdmodel"
        params_file_path = model_dir + "/inference.pdiparams"
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        if not os.path.exists(params_file_path):
            raise ValueError("not find params file path {}".format(
                params_file_path))
sugon_cxj's avatar
sugon_cxj committed
128

129
        config = inference.Config(model_file_path, params_file_path)
sugon_cxj's avatar
sugon_cxj committed
130

131
132
133
134
135
136
137
138
        if hasattr(args, 'precision'):
            if args.precision == "fp16" and args.use_tensorrt:
                precision = inference.PrecisionType.Half
                print("fp16 set success!")
            elif args.precision == "int8":
                precision = inference.PrecisionType.Int8
            else:
                precision = inference.PrecisionType.Float32
sugon_cxj's avatar
sugon_cxj committed
139
140
141
        else:
            precision = inference.PrecisionType.Float32

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        if args.use_gpu:
            gpu_id = get_infer_gpuid()
            if gpu_id is None:
                logger.warning(
                    "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson."
                )
            config.enable_use_gpu(args.gpu_mem, 0)
            use_dynamic_shape = True
            if mode == "det":
                min_input_shape = {
                    "x": [1, 3, 50, 50],
                    "conv2d_92.tmp_0": [1, 120, 20, 20],
                    "conv2d_91.tmp_0": [1, 24, 10, 10],
                    "conv2d_59.tmp_0": [1, 96, 20, 20],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                    "conv2d_124.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
                    "elementwise_add_7": [1, 56, 2, 2],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
                }
                max_input_shape = {
                    "x": [1, 3, 1536, 1536],
                    "conv2d_92.tmp_0": [1, 120, 400, 400],
                    "conv2d_91.tmp_0": [1, 24, 200, 200],
                    "conv2d_59.tmp_0": [1, 96, 400, 400],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
                    "conv2d_124.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
                    "elementwise_add_7": [1, 56, 400, 400],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
                }
                opt_input_shape = {
                    "x": [1, 3, 640, 640],
                    "conv2d_92.tmp_0": [1, 120, 160, 160],
                    "conv2d_91.tmp_0": [1, 24, 80, 80],
                    "conv2d_59.tmp_0": [1, 96, 160, 160],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
                    "conv2d_124.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
                    "elementwise_add_7": [1, 56, 40, 40],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
                }
                min_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
                }
                max_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
                }
                opt_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
                }
                min_input_shape.update(min_pact_shape)
                max_input_shape.update(max_pact_shape)
                opt_input_shape.update(opt_pact_shape)
            elif mode == "rec":
                if args.rec_algorithm not in ["CRNN", "SVTR_LCNet"]:
                    use_dynamic_shape = False
                imgH = int(args.rec_image_shape.split(',')[-2])
                min_input_shape = {"x": [1, 3, imgH, 10]}
                max_input_shape = {"x": [args.rec_batch_num, 3, imgH, 2304]}
                opt_input_shape = {"x": [args.rec_batch_num, 3, imgH, 320]}
                config.exp_disable_tensorrt_ops(["transpose2"])
            elif mode == "cls":
                min_input_shape = {"x": [1, 3, 48, 10]}
                max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
                opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
            else:
sugon_cxj's avatar
sugon_cxj committed
227
                use_dynamic_shape = False
228
229
230
            if use_dynamic_shape:
                config.set_trt_dynamic_shape_info(
                    min_input_shape, max_input_shape, opt_input_shape)
sugon_cxj's avatar
sugon_cxj committed
231

232
233
        elif args.use_xpu:
            config.enable_xpu(10 * 1024 * 1024)
sugon_cxj's avatar
sugon_cxj committed
234
        else:
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
            config.disable_gpu()
            if hasattr(args, "cpu_threads"):
                config.set_cpu_math_library_num_threads(args.cpu_threads)
            else:
                # default cpu threads as 10
                config.set_cpu_math_library_num_threads(10)
            if args.enable_mkldnn:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
                if args.precision == "fp16":
                    config.enable_mkldnn_bfloat16()
        # enable memory optim
        config.enable_memory_optim()
        config.disable_glog_info()
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
        config.delete_pass("matmul_transpose_reshape_fuse_pass")
        if mode == 'table':
            config.delete_pass("fc_fuse_pass")  # not supported for table
        config.switch_use_feed_fetch_ops(False)
        config.switch_ir_optim(True)
sugon_cxj's avatar
sugon_cxj committed
256

257
258
259
260
261
262
263
        # create predictor
        predictor = inference.create_predictor(config)
        input_names = predictor.get_input_names()
        for name in input_names:
            input_tensor = predictor.get_input_handle(name)
        output_tensors = get_output_tensors(args, mode, predictor)
        return predictor, input_tensor, output_tensors, config
sugon_cxj's avatar
sugon_cxj committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288


def get_output_tensors(args, mode, predictor):
    output_names = predictor.get_output_names()
    output_tensors = []
    if mode == "rec" and args.rec_algorithm in ["CRNN", "SVTR_LCNet"]:
        output_name = 'softmax_0.tmp_0'
        if output_name in output_names:
            return [predictor.get_output_handle(output_name)]
        else:
            for output_name in output_names:
                output_tensor = predictor.get_output_handle(output_name)
                output_tensors.append(output_tensor)
    else:
        for output_name in output_names:
            output_tensor = predictor.get_output_handle(output_name)
            output_tensors.append(output_tensor)
    return output_tensors


def get_infer_gpuid():
    sysstr = platform.system()
    if sysstr == "Windows":
        return 0

dcuai's avatar
dcuai committed
289
    if not paddle.core.is_compiled_with_rocm():
sugon_cxj's avatar
sugon_cxj committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        cmd = "env | grep CUDA_VISIBLE_DEVICES"
    else:
        cmd = "env | grep HIP_VISIBLE_DEVICES"
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


def draw_text_det_res(dt_boxes, img_path):
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
    return src_im


def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))

    import random

    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
        draw_left.polygon(box, fill=color)
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
    return np.array(img_show)


def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


if __name__ == '__main__':
    pass