vqa_eval.py 9.27 KB
Newer Older
luopl's avatar
init  
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# Copyright (c) OpenMMLab. All rights reserved.
# Partly adopted from https://github.com/GT-Vision-Lab/VQA
# Copyright (c) 2014, Aishwarya Agrawal

from ...smp import *
from typing import Optional


def _process_digit_article(inText):
    outText = []
    tempText = inText.lower().split()
    articles = ['a', 'an', 'the']
    manualMap = {
        'none': '0',
        'zero': '0',
        'one': '1',
        'two': '2',
        'three': '3',
        'four': '4',
        'five': '5',
        'six': '6',
        'seven': '7',
        'eight': '8',
        'nine': '9',
        'ten': '10',
    }
    contractions = {
        'aint': "ain't",
        'arent': "aren't",
        'cant': "can't",
        'couldve': "could've",
        'couldnt': "couldn't",
        "couldn'tve": "couldn't've",
        "couldnt've": "couldn't've",
        'didnt': "didn't",
        'doesnt': "doesn't",
        'dont': "don't",
        'hadnt': "hadn't",
        "hadnt've": "hadn't've",
        "hadn'tve": "hadn't've",
        'hasnt': "hasn't",
        'havent': "haven't",
        'hed': "he'd",
        "hed've": "he'd've",
        "he'dve": "he'd've",
        'hes': "he's",
        'howd': "how'd",
        'howll': "how'll",
        'hows': "how's",
        "Id've": "I'd've",
        "I'dve": "I'd've",
        'Im': "I'm",
        'Ive': "I've",
        'isnt': "isn't",
        'itd': "it'd",
        "itd've": "it'd've",
        "it'dve": "it'd've",
        'itll': "it'll",
        "let's": "let's",
        'maam': "ma'am",
        'mightnt': "mightn't",
        "mightnt've": "mightn't've",
        "mightn'tve": "mightn't've",
        'mightve': "might've",
        'mustnt': "mustn't",
        'mustve': "must've",
        'neednt': "needn't",
        'notve': "not've",
        'oclock': "o'clock",
        'oughtnt': "oughtn't",
        "ow's'at": "'ow's'at",
        "'ows'at": "'ow's'at",
        "'ow'sat": "'ow's'at",
        'shant': "shan't",
        "shed've": "she'd've",
        "she'dve": "she'd've",
        "she's": "she's",
        'shouldve': "should've",
        'shouldnt': "shouldn't",
        "shouldnt've": "shouldn't've",
        "shouldn'tve": "shouldn't've",
        "somebody'd": 'somebodyd',
        "somebodyd've": "somebody'd've",
        "somebody'dve": "somebody'd've",
        'somebodyll': "somebody'll",
        'somebodys': "somebody's",
        'someoned': "someone'd",
        "someoned've": "someone'd've",
        "someone'dve": "someone'd've",
        'someonell': "someone'll",
        'someones': "someone's",
        'somethingd': "something'd",
        "somethingd've": "something'd've",
        "something'dve": "something'd've",
        'somethingll': "something'll",
        'thats': "that's",
        'thered': "there'd",
        "thered've": "there'd've",
        "there'dve": "there'd've",
        'therere': "there're",
        'theres': "there's",
        'theyd': "they'd",
        "theyd've": "they'd've",
        "they'dve": "they'd've",
        'theyll': "they'll",
        'theyre': "they're",
        'theyve': "they've",
        'twas': "'twas",
        'wasnt': "wasn't",
        "wed've": "we'd've",
        "we'dve": "we'd've",
        'weve': "we've",
        'werent': "weren't",
        'whatll': "what'll",
        'whatre': "what're",
        'whats': "what's",
        'whatve': "what've",
        'whens': "when's",
        'whered': "where'd",
        'wheres': "where's",
        'whereve': "where've",
        'whod': "who'd",
        "whod've": "who'd've",
        "who'dve": "who'd've",
        'wholl': "who'll",
        'whos': "who's",
        'whove': "who've",
        'whyll': "why'll",
        'whyre': "why're",
        'whys': "why's",
        'wont': "won't",
        'wouldve': "would've",
        'wouldnt': "wouldn't",
        "wouldnt've": "wouldn't've",
        "wouldn'tve": "wouldn't've",
        'yall': "y'all",
        "yall'll": "y'all'll",
        "y'allll": "y'all'll",
        "yall'd've": "y'all'd've",
        "y'alld've": "y'all'd've",
        "y'all'dve": "y'all'd've",
        'youd': "you'd",
        "youd've": "you'd've",
        "you'dve": "you'd've",
        'youll': "you'll",
        'youre': "you're",
        'youve': "you've",
    }
    for word in tempText:
        word = manualMap.setdefault(word, word)
        if word not in articles:
            outText.append(word)
    for wordId, word in enumerate(outText):
        if word in contractions:
            outText[wordId] = contractions[word]
    outText = ' '.join(outText)
    return outText


def hit_calculate(result, dataset_name, anls_threshold=0.5):
    if listinstr(['TextVQA'], dataset_name):
        return [np.mean(x['match']) for x in result]
    elif listinstr(['DocVQA', 'InfoVQA'], dataset_name):
        return [0.0 if 1 - np.min(x['match']) < anls_threshold else 1 - np.min(x['match']) for x in result]
    elif listinstr(['ChartQA', 'OCRVQA'], dataset_name):
        return [np.max(x['match']) for x in result]
    else:  # default using vqa_score to calculate score
        return [np.mean(x['match']) for x in result]


# https://github.com/google-research/pix2struct/blob/main/pix2struct/metrics.py#L81
def relaxed_correctness(target: str,
                        prediction: str,
                        max_relative_change: float = 0.05) -> bool:
    """Calculates relaxed correctness.

    The correctness tolerates certain error ratio defined by max_relative_change.
    See https://arxiv.org/pdf/2203.10244.pdf, end of section 5.1:
    “Following Methani et al. (2020), we use a relaxed accuracy measure for the
    numeric answers to allow a minor inaccuracy that may result from the automatic
    data extraction process. We consider an answer to be correct if it is within
    5% of the gold answer. For non-numeric answers, we still need an exact match
    to consider an answer to be correct.”

    Args:
      target: Target string.
      prediction: Predicted string.
      max_relative_change: Maximum relative change.

    Returns:
      Whether the prediction was correct given the specified tolerance.
    """

    def _to_float(text: str) -> Optional[float]:
        try:
            if text.endswith('%'):
                # Convert percentages to floats.
                return float(text.rstrip('%')) / 100.0
            else:
                return float(text)
        except ValueError:
            return None
    prediction = str(prediction)
    target = str(target)
    prediction_float = _to_float(prediction)
    target_float = _to_float(target)
    if prediction_float is not None and target_float:
        relative_change = abs(prediction_float - target_float) / abs(target_float)
        return relative_change <= max_relative_change
    else:
        return prediction.lower() == target.lower()


def levenshtein_distance(s1, s2):
    if len(s1) > len(s2):
        s1, s2 = s2, s1

    distances = range(len(s1) + 1)
    for i2, c2 in enumerate(s2):
        distances_ = [i2 + 1]
        for i1, c1 in enumerate(s1):
            if c1 == c2:
                distances_.append(distances[i1])
            else:
                distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1])))
        distances = distances_
    return distances[-1]


def anls_compute(groundtruth, prediction):
    gt_answer = ' '.join(groundtruth.strip().lower().split())
    det_answer = ' '.join(prediction.strip().lower().split())
    dist = levenshtein_distance(gt_answer, det_answer)
    length = max(len(groundtruth.upper()), len(prediction.upper()))
    values = 0.0 if length == 0 else float(dist) / float(length)
    return values


def process_answer(answer):
    answer = answer.replace('\n', ' ')
    answer = answer.replace('\t', ' ')
    answer = answer.strip()
    answer = process_punctuation(answer)
    answer = _process_digit_article(answer)
    return answer


def process_line(line, method='vqa_score'):
    ret = {}
    if istype(line['answer'], list):
        answers = eval(line['answer'])
    else:
        answers = [line['answer']]
    if method == 'vqa_score':
        ret['gt'] = [process_answer(x) for x in answers]
        ret['pred'] = process_answer(line['prediction'])
        ret['match'] = []
        for current_idx, gtAnsDatum in enumerate(ret['gt']):
            otherGTAns = [
                item for ret_gt_idx, item in enumerate(ret['gt'])
                if ret_gt_idx != current_idx
            ]
            matchingAns = [
                item for item in otherGTAns if item == ret['pred']
            ]
            acc = min(1, float(len(matchingAns)) / 3)
            ret['match'].append(acc)
    elif method == 'anls':
        ret['gt'] = answers
        ret['pred'] = line['prediction']
        ret['match'] = [anls_compute(x, ret['pred']) for x in ret['gt']]
    elif method == 'relaxed_accuracy':
        ret['gt'] = answers
        ret['pred'] = line['prediction'].strip()
        ret['match'] = [relaxed_correctness(ret['pred'], x) for x in ret['gt']]
    elif method == 'accuracy':
        ret['gt'] = answers
        ret['pred'] = line['prediction'].strip()
        ret['match'] = [(1.0 if (x.strip().lower() == ret['pred'].strip().lower()) else 0.0) for x in ret['gt']]
    else:  # default using vqa_score to calculate score
        ret['gt'] = [process_answer(x) for x in answers]
        ret['pred'] = process_answer(line['prediction'])
        ret['match'] = [x == ret['pred'] for x in ret['gt']]

    return ret