simple_test.py 1.17 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch
from PIL import Image
import open_clip

if __name__ == "__main__":
    import argparse
    
    parser = argparse.ArgumentParser()
    
    parser.add_argument("--model_name", default="ViT-B-32", type=str)
    
    parser.add_argument("--pretrained", default="laion2b_s34b_b79k", type=str)
    
    args = parser.parse_args()
    
    model, _, preprocess = open_clip.create_model_and_transforms(args.model_name, pretrained=args.pretrained)
    model.eval()  # model in train mode by default, impacts some models with BatchNorm or stochastic depth active
    tokenizer = open_clip.get_tokenizer(args.model_name)
    model.cuda()

    image = preprocess(Image.open("docs/CLIP.png")).unsqueeze(0)
    text = tokenizer(["a diagram", "a dog", "a cat"])

    with torch.no_grad(), torch.cuda.amp.autocast():
        image_features = model.encode_image(image)
        text_features = model.encode_text(text)
        image_features /= image_features.norm(dim=-1, keepdim=True)
        text_features /= text_features.norm(dim=-1, keepdim=True)

        text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)

    print("Label probs:", text_probs)  # prints: [[1., 0., 0.]]