viton.py 10.1 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import json
from os import path as osp

import numpy as np
from PIL import Image, ImageDraw
import torch
from torch.utils import data
from torchvision import transforms
import argparse

import lightning as L
from typing import Optional


class VITONDataset(data.Dataset):
    def __init__(self, 
                 data_dir: str,
                 dataset_list: str,
                 height: int,
                 width: int,
                 semantic_nc: int):
        super(VITONDataset, self).__init__()
        self.load_height = height
        self.load_width = width
        self.semantic_nc = semantic_nc
        self.data_path = data_dir
        self.transform = transforms.Compose([
            transforms.ToTensor(),
            # transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])

        # load data list
        img_names = []     #模特图片
        c_names = []       #服装图片
        with open(dataset_list, 'r') as f:
            for line in f.readlines():
                img_name, c_name = line.strip().split()
                img_names.append(img_name)
                c_names.append(c_name)

        self.img_names = img_names    
        self.c_names = dict()
        # self.c_names['paired'] = c_names
        ###img跟cloth名称相同,在不同文件夹下
        self.c_names['paired'] = img_names

    def get_parse_agnostic(self, parse, pose_data):  
        parse_array = np.array(parse)
        parse_upper = ((parse_array == 5).astype(np.float32) +
                       (parse_array == 6).astype(np.float32) +
                       (parse_array == 7).astype(np.float32))
        parse_neck = (parse_array == 10).astype(np.float32)

        r = 10
        agnostic = parse.copy()

        # mask arms
        for parse_id, pose_ids in [(14, [2, 5, 6, 7]), (15, [5, 2, 3, 4])]:
            mask_arm = Image.new('L', (self.load_width, self.load_height), 'black')
            mask_arm_draw = ImageDraw.Draw(mask_arm)
            i_prev = pose_ids[0]
            for i in pose_ids[1:]:
                if (pose_data[i_prev, 0] == 0.0 and pose_data[i_prev, 1] == 0.0) or (pose_data[i, 0] == 0.0 and pose_data[i, 1] == 0.0):
                    continue
                mask_arm_draw.line([tuple(pose_data[j]) for j in [i_prev, i]], 'white', width=r*10)
                pointx, pointy = pose_data[i]
                radius = r*4 if i == pose_ids[-1] else r*15
                mask_arm_draw.ellipse((pointx-radius, pointy-radius, pointx+radius, pointy+radius), 'white', 'white')
                i_prev = i
            parse_arm = (np.array(mask_arm) / 255) * (parse_array == parse_id).astype(np.float32)
            agnostic.paste(0, None, Image.fromarray(np.uint8(parse_arm * 255), 'L'))

        # mask torso & neck
        agnostic.paste(0, None, Image.fromarray(np.uint8(parse_upper * 255), 'L'))
        agnostic.paste(0, None, Image.fromarray(np.uint8(parse_neck * 255), 'L'))

        return agnostic

    def get_img_agnostic(self, img, parse, pose_data):
        parse_array = np.array(parse)
        parse_head = ((parse_array == 4).astype(np.float32) +
                      (parse_array == 13).astype(np.float32))
        parse_lower = ((parse_array == 9).astype(np.float32) +
                       (parse_array == 12).astype(np.float32) +
                       (parse_array == 16).astype(np.float32) +
                       (parse_array == 17).astype(np.float32) +
                       (parse_array == 18).astype(np.float32) +
                       (parse_array == 19).astype(np.float32))

        r = 20
        agnostic = img.copy()
        agnostic_draw = ImageDraw.Draw(agnostic)

        length_a = np.linalg.norm(pose_data[5] - pose_data[2])
        length_b = np.linalg.norm(pose_data[12] - pose_data[9])
        point = (pose_data[9] + pose_data[12]) / 2
        pose_data[9] = point + (pose_data[9] - point) / length_b * length_a
        pose_data[12] = point + (pose_data[12] - point) / length_b * length_a

        # mask arms
        agnostic_draw.line([tuple(pose_data[i]) for i in [2, 5]], 'gray', width=r*10)
        for i in [2, 5]:
            pointx, pointy = pose_data[i]
            agnostic_draw.ellipse((pointx-r*5, pointy-r*5, pointx+r*5, pointy+r*5), 'gray', 'gray')
        for i in [3, 4, 6, 7]:
            if (pose_data[i - 1, 0] == 0.0 and pose_data[i - 1, 1] == 0.0) or (pose_data[i, 0] == 0.0 and pose_data[i, 1] == 0.0):
                continue
            agnostic_draw.line([tuple(pose_data[j]) for j in [i - 1, i]], 'gray', width=r*10)
            pointx, pointy = pose_data[i]
            agnostic_draw.ellipse((pointx-r*5, pointy-r*5, pointx+r*5, pointy+r*5), 'gray', 'gray')

        # mask torso
        for i in [9, 12]:
            pointx, pointy = pose_data[i]
            agnostic_draw.ellipse((pointx-r*3, pointy-r*6, pointx+r*3, pointy+r*6), 'gray', 'gray')
        agnostic_draw.line([tuple(pose_data[i]) for i in [2, 9]], 'gray', width=r*6)
        agnostic_draw.line([tuple(pose_data[i]) for i in [5, 12]], 'gray', width=r*6)
        agnostic_draw.line([tuple(pose_data[i]) for i in [9, 12]], 'gray', width=r*12)
        agnostic_draw.polygon([tuple(pose_data[i]) for i in [2, 5, 12, 9]], 'gray', 'gray')

        # mask neck
        pointx, pointy = pose_data[1]
        agnostic_draw.rectangle((pointx-r*7, pointy-r*7, pointx+r*7, pointy+r*7), 'gray', 'gray')
        agnostic.paste(img, None, Image.fromarray(np.uint8(parse_head * 255), 'L'))
        agnostic.paste(img, None, Image.fromarray(np.uint8(parse_lower * 255), 'L'))

        return agnostic

    def __getitem__(self, index):
        img_name = self.img_names[index]
        c_name = {}
        c = {}
        cm = {}
        for key in self.c_names:
            c_name[key] = self.c_names[key][index]
            c[key] = Image.open(osp.join(self.data_path, 'cloth', c_name[key])).convert('RGB')
            c[key] = transforms.Resize(self.load_width, interpolation=2)(c[key])
            cm[key] = Image.open(osp.join(self.data_path, 'cloth-mask', c_name[key]))
            cm[key] = transforms.Resize(self.load_width, interpolation=0)(cm[key])

            c[key] = self.transform(c[key])  # [-1,1]
            cm_array = np.array(cm[key])
            cm_array = (cm_array >= 128).astype(np.float32)
            cm[key] = torch.from_numpy(cm_array)  # [0,1]
            cm[key].unsqueeze_(0)

        # load pose image
        pose_name = img_name.replace('.jpg', '_rendered.png')
        pose_rgb = Image.open(osp.join(self.data_path, 'openpose_img', pose_name))
        pose_rgb = transforms.Resize(self.load_width, interpolation=2)(pose_rgb)
        pose_rgb = self.transform(pose_rgb)  # [-1,1]

        pose_name = img_name.replace('.jpg', '_keypoints.json')
        with open(osp.join(self.data_path, 'openpose_json', pose_name), 'r') as f:
            pose_label = json.load(f)
            pose_data = pose_label['people'][0]['pose_keypoints_2d']
            pose_data = np.array(pose_data)
            pose_data = pose_data.reshape((-1, 3))[:, :2]

        # load parsing image
        parse_name = img_name.replace('.jpg', '.png')
        parse = Image.open(osp.join(self.data_path, 'image-parse-v3', parse_name))
        parse = transforms.Resize(self.load_width, interpolation=0)(parse)
        parse_agnostic = self.get_parse_agnostic(parse, pose_data)
        parse_agnostic = torch.from_numpy(np.array(parse_agnostic)[None]).long()

        labels = {
            0: ['background', [0, 10]],
            1: ['hair', [1, 2]],
            2: ['face', [4, 13]],
            3: ['upper', [5, 6, 7]],
            4: ['bottom', [9, 12]],
            5: ['left_arm', [14]],
            6: ['right_arm', [15]],
            7: ['left_leg', [16]],
            8: ['right_leg', [17]],
            9: ['left_shoe', [18]],
            10: ['right_shoe', [19]],
            11: ['socks', [8]],
            12: ['noise', [3, 11]]
        }
        parse_agnostic_map = torch.zeros(20, self.load_height, self.load_width, dtype=torch.float)
        parse_agnostic_map.scatter_(0, parse_agnostic, 1.0)
        new_parse_agnostic_map = torch.zeros(self.semantic_nc, self.load_height, self.load_width, dtype=torch.float)
        for i in range(len(labels)):
            for label in labels[i][1]:
                new_parse_agnostic_map[i] += parse_agnostic_map[label]

        # load person image
        img = Image.open(osp.join(self.data_path, 'image', img_name))
        img = transforms.Resize(self.load_width, interpolation=2)(img)
        img_agnostic = self.get_img_agnostic(img, parse, pose_data)
        img = self.transform(img)
        img_agnostic = self.transform(img_agnostic)  # [-1,1]

        result = {
            'img_name': img_name,
            'c_name': c_name,
            'img': img,
            'img_agnostic': img_agnostic,
            'parse_agnostic': new_parse_agnostic_map,
            'pose': pose_rgb,
            'cloth': c,
            'cloth_mask': cm,
        }
        return result

    def __len__(self):
        return len(self.img_names)


class VITONDataModule(L.LightningDataModule):
    
    def __init__(self,
                 root_dir,
                 mode: str = "train",
                 height: int = 512,
                 width: int = 384,
                 semantic_nc: int = 13,
                 batch_size: int = 1,
                 num_workers: int = 1):
        super().__init__()
        
        self.data_dir = osp.join(root_dir, mode)
        self.dataset_list = osp.join(root_dir, f"{mode}_pairs.txt")
        self.height, self.width = height, width
        self.semantic_nc = semantic_nc
        
        self.batch_size = batch_size
        self.num_workers = num_workers
    
    def setup(self, stage=None):
        self.train_dataset = VITONDataset(
            self.data_dir,
            self.dataset_list,
            self.height,
            self.width,
            self.semantic_nc
        )
        
    def train_dataloader(self):
        return data.DataLoader(self.train_dataset,
                               batch_size=self.batch_size,
                               num_workers=self.num_workers)


if __name__ == "__main__":
    dm = VITONDataModule("/parastor/home/mashun/modelzoo/OOTDiffusion/datasets/VITON-HD")
    dm.setup()
    
    dl = dm.train_dataloader()
    
    for data in dl:
        print(data)
        exit()