evaluate_spider2.py 15.6 KB
Newer Older
mashun1's avatar
omnisql  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# import debugpy; debugpy.connect(('127.0.0.1', 5688))
import json
import re
import pandas as pd
import math
# import duckdb
from typing import List, Union
import os
import os.path as osp
import pandas as pd
import argparse
# from google.cloud import bigquery
import shutil
import multiprocessing as mp
import sqlite3
from tqdm import tqdm
# import snowflake.connector
import logging
from func_timeout import func_timeout, FunctionTimedOut
import sys
from functools import partial
import tempfile

class TeeOutput:
    def __init__(self, filename):
        self.console = sys.stdout
        self.file = open(filename, 'w')
    
    def write(self, message):
        self.console.write(message)
        self.file.write(message)
    
    def flush(self):
        self.console.flush()
        self.file.flush()
    
    def close(self):
        self.file.close()

sys.stdout = TeeOutput('log.txt')
sys.stderr = sys.stdout

TOTAL_GB_PROCESSED = 0.0


byte_output_dict = {}

def load_jsonl_to_dict(jsonl_file):
    data_dict = {}
    with open(jsonl_file, 'r') as file:
        for line in file:
            item = json.loads(line.strip())
            instance_id = item['instance_id']
            data_dict[instance_id] = item
    return data_dict

def load_json_list_to_dict(json_file_path):
    with open(json_file_path, 'r', encoding='utf-8') as file:
        data_list = json.load(file)
    data_dict = {item['instance_id']: item for item in data_list}
    return data_dict

def compare_multi_pandas_table(pred, multi_gold, multi_condition_cols, multi_ignore_order):
    # print('multi_condition_cols', multi_condition_cols)
    # print("len(multi_condition_cols)", len(multi_condition_cols))

    if multi_condition_cols == [] or multi_condition_cols == [[]] or multi_condition_cols == [None] or multi_condition_cols == None:
        multi_condition_cols = [[] for _ in range(len(multi_gold))]
    elif len(multi_gold) > 1 and not all(isinstance(sublist, list) for sublist in multi_condition_cols):
        multi_condition_cols = [multi_condition_cols for _ in range(len(multi_gold))]
    # multi_ignore_order = [multi_ignore_order for _ in range(len(multi_gold))]

    assert len(multi_gold) == len(multi_condition_cols) == len(multi_ignore_order)

    for i, gold in enumerate(multi_gold):
        if compare_pandas_table(pred, gold, multi_condition_cols[i], multi_ignore_order[i]):
            return 1
    return 0

def compare_pandas_table(pred, gold, condition_cols=[], ignore_order=False):
    """_summary_

    Args:
        pred (Dataframe): _description_
        gold (Dataframe): _description_
        condition_cols (list, optional): _description_. Defaults to [].
        ignore_order (bool, optional): _description_. Defaults to False.

    """
    # print('condition_cols', condition_cols)
    
    tolerance = 1e-2

    def vectors_match(v1, v2, tol=tolerance, ignore_order_=False):
        if ignore_order_:
            v1, v2 = (sorted(v1, key=lambda x: (x is None, str(x), isinstance(x, (int, float)))),
                    sorted(v2, key=lambda x: (x is None, str(x), isinstance(x, (int, float)))))
        if len(v1) != len(v2):
            return False
        for a, b in zip(v1, v2):
            if pd.isna(a) and pd.isna(b):
                continue
            elif isinstance(a, (int, float)) and isinstance(b, (int, float)):
                if not math.isclose(float(a), float(b), abs_tol=tol):
                    return False
            elif a != b:
                return False
        return True
    
    if condition_cols != []:
        gold_cols = gold.iloc[:, condition_cols]
    else:
        gold_cols = gold
    pred_cols = pred

    t_gold_list = gold_cols.transpose().values.tolist()
    t_pred_list = pred_cols.transpose().values.tolist()
    score = 1
    for _, gold in enumerate(t_gold_list):
        if not any(vectors_match(gold, pred, ignore_order_=ignore_order) for pred in t_pred_list):
            score = 0
        else:
            for j, pred in enumerate(t_pred_list):
                if vectors_match(gold, pred, ignore_order_=ignore_order):
                    break

    return score

def get_sqlite_result(db_file_path, query, save_dir=None, file_name="result.csv", chunksize=500):
    conn = sqlite3.connect(db_file_path)
    memory_conn = sqlite3.connect(':memory:')

    conn.backup(memory_conn)
    
    try:
        if save_dir:
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            for i, chunk in enumerate(pd.read_sql_query(query, memory_conn, chunksize=chunksize)):
                mode = 'a' if i > 0 else 'w'
                header = i == 0
                chunk.to_csv(os.path.join(save_dir, file_name), mode=mode, header=header, index=False)
        else:
            df = pd.read_sql_query(query, memory_conn)
            return True, df

    except Exception as e:
        print(f"An error occurred: {e}")
        return False, str(e)

    finally:
        memory_conn.close()
        conn.close()
    
    return True, None

def evaluate_spider2sql(gold_result_dir, eval_standard_dict, gold, pred_sqls, db_path, temp_dir):
    instance_id2db_id = dict()
    for gt_data in gold:
        instance_id2db_id[gt_data["instance_id"]] = gt_data["db_id"]
    
    instance_id2pred_sql_query = dict()
    for gt_data, pred_sql in zip(gold, pred_sqls):
        instance_id2pred_sql_query[gt_data["instance_id"]] =  pred_sql
    
    eval_ids = list(eval_standard_dict.keys())
    assert len(gold) == len(pred_sqls) == len(eval_ids)

    output_results = []
    for instance_id in tqdm(eval_ids):
        print(f">>>Evaluating {instance_id}...")
        if instance_id not in instance_id2pred_sql_query:
            raise ValueError("instance id '{instance_id}' not in instance_id2pred_sql_query")
        if instance_id not in instance_id2db_id:
            raise ValueError("instance id '{instance_id}' not in instance_id2db_id")

        error_info = None
        pred_sql_query = instance_id2pred_sql_query[instance_id]
        db_file_path = os.path.join(db_path, instance_id2db_id[instance_id], instance_id2db_id[instance_id] + ".sqlite")
        exe_flag, dbms_error_info = get_sqlite_result(db_file_path, pred_sql_query, temp_dir, f"{instance_id}_pred.csv")
        if exe_flag == False:
            score = 0
            error_info = dbms_error_info
        else:
            pred_pd = pd.read_csv(os.path.join(temp_dir, f"{instance_id}_pred.csv"))  
            pattern = re.compile(rf'^{re.escape(instance_id)}(_[a-z])?\.csv$')

            all_files = os.listdir(gold_result_dir)
            csv_files = [file for file in all_files if pattern.match(file)]
            if len(csv_files) == 1:
                gold_pd = pd.read_csv(os.path.join(gold_result_dir, f"{instance_id}.csv"))
                try:
                    score = compare_pandas_table(pred_pd, gold_pd, eval_standard_dict.get(instance_id)['condition_cols'], eval_standard_dict.get(instance_id)['ignore_order'])
                except Exception as e:
                    print(f"An error occurred: {e}")
                    score = 0
                    error_info = 'Python Script Error:' + str(e)
                if score == 0 and error_info is None:
                    error_info = 'Result Error'     
                # print("score:", score)
                # print("pred_pd:\n", pred_pd)
                # print("gold_pd:\n", gold_pd)

            elif len(csv_files) > 1:
                gold_pds = [pd.read_csv(os.path.join(gold_result_dir, file)) for file in csv_files]
                score = compare_multi_pandas_table(pred_pd, gold_pds, eval_standard_dict.get(instance_id)['condition_cols'], eval_standard_dict.get(instance_id)['ignore_order'])
                if score == 0 and error_info is None:
                    error_info = 'Result Error'
                # print("score:", score)
                # print("pred_pd:\n", pred_pd)
                # print("gold_pds:\n", gold_pds)

        output_results.append(
            {
                "instance_id": instance_id, 
                "score": score,
                "pred_sql": pred_sql_query,
                "error_info": error_info
            }
        )

    print({item['instance_id']: item['score'] for item in output_results})
    final_acc = sum([item['score'] for item in output_results]) / len(output_results)
    print(f"Final score: {final_acc}")
    print("Correct Instance ID:")
    for item in output_results:
        if item["score"] == 1:
            print(item["instance_id"])
    return output_results, final_acc

def execute_sql(data_idx, db_file, sql):
    conn = sqlite3.connect(db_file)
    cursor = conn.cursor()
    try:
        conn.execute("BEGIN TRANSACTION;")
        cursor.execute(sql)
        execution_res = cursor.fetchall()
        execution_res = frozenset(execution_res) # make set hashable
        conn.rollback()
        conn.close()
        return {"data_idx": data_idx, "sql": sql, "execution_res": execution_res, "valid_flag": 1}
    except:
        conn.rollback()
        conn.close()
        return {"data_idx": data_idx, "sql": sql, "execution_res": None, "valid_flag": 0}

def execute_sql_wrapper(data_idx, db_file, sql, timeout):
    try:
        res = func_timeout(timeout, execute_sql, args=(data_idx, db_file, sql))
    except KeyboardInterrupt:
        sys.exit(0)
    except FunctionTimedOut:
        res = {"data_idx": data_idx, "sql": sql, "execution_res": None, "valid_flag": 0}
    except Exception as e:
        res = {"data_idx": data_idx, "sql": sql, "execution_res": None, "valid_flag": 0}

    return res

def execute_callback_execute_sqls(result, all_execution_results):
    # print("Done:", result["data_idx"])
    all_execution_results.append(result)

def execute_sqls_parallel(all_db_files, all_sqls, all_execution_results, num_cpus=10, timeout=30):
    pool = mp.Pool(processes=num_cpus)
    for data_idx, db_file, sql in zip(list(range(len(all_sqls))), all_db_files, all_sqls):
        callback_with_results = partial(execute_callback_execute_sqls, all_execution_results=all_execution_results)
        pool.apply_async(execute_sql_wrapper, args=(data_idx, db_file, sql, timeout), callback = callback_with_results)
    pool.close()
    pool.join()

def evaluate(mode, gold_result_dir, eval_standard, gold_file, pred_file, db_path, save_pred_sqls):
    eval_standard_dict = load_jsonl_to_dict(eval_standard)
    gold = json.load(open(gold_file))
    pred = json.load(open(pred_file))
    pred_sql_key = "pred_sqls"
    # pred_sql_key = "responses"

    sampling_num = len(pred[0][pred_sql_key])
    print(f"sampling_num: {sampling_num}")

    all_db_files = []
    all_pred_sqls = []
    for gold_data, pred_data in tqdm(zip(gold, pred)):
        db_file = os.path.join(db_path, gold_data["db_id"], gold_data["db_id"] + ".sqlite")
        for sample_idx in range(sampling_num):
            all_db_files.append(db_file)
            all_pred_sqls.append(pred_data[pred_sql_key][sample_idx])
    # obtain execution results of all predicted SQL queries
    all_execution_results = []
    execute_sqls_parallel(all_db_files, all_pred_sqls, all_execution_results, num_cpus=40, timeout=10)
    all_execution_results = sorted(all_execution_results, key=lambda x: x["data_idx"])
    print([res["data_idx"] for res in all_execution_results])
    
    pred_sqls = []
    for idx in range(len(gold)):
        execution_results = all_execution_results[idx*sampling_num: (idx+1)*sampling_num]
        if mode == "greedy_search":
            # For greedy_search calculation, pred_sqls is a list of SQL query strings.
            assert len(execution_results) == len(pred[0][pred_sql_key]) == sampling_num == 1
            if execution_results[0]["valid_flag"] == 1:
                pred_sqls.append(execution_results[0]["sql"])
            else:
                pred_sqls.append("Error SQL qeury")
        elif mode == "major_voting":
            # For major_voting calculation, pred_sqls is a list of SQL query strings.
            assert len(execution_results) == len(pred[0][pred_sql_key]) == sampling_num
            # no one pred sql is valid
            if sum(res["valid_flag"] for res in execution_results) == 0:
                pred_sqls.append("Error SQL qeury")
                continue

            major_voting_counting = dict()
            for res in execution_results:
                if res["valid_flag"] == 0:
                    continue
                if res["execution_res"] in major_voting_counting:
                    major_voting_counting[res["execution_res"]][0] += 1
                else:
                    major_voting_counting[res["execution_res"]] = [1, res["sql"]]
            major_vote = max(major_voting_counting.values(), key=lambda x: x[0])
            mj_pred_sql = major_vote[1]
            pred_sqls.append(mj_pred_sql)
        elif mode == "pass@k":
            # For pass@k calculation, pred_sqls is a list where each element is a list of SQL query strings.
            assert len(execution_results) == len(pred[0][pred_sql_key]) == sampling_num
            pred_sqls.append([res["sql"] if res["valid_flag"] == 1 else "Error SQL query" for res in execution_results])

    assert len(pred_sqls) == len(gold) == len(pred)

    if mode in ["greedy_search", "major_voting"]:
        temp_dir = tempfile.mkdtemp(prefix="temp-") # , dir="./"
        print("temp_dir:", temp_dir)
        output_results, final_acc = evaluate_spider2sql(
            gold_result_dir,
            eval_standard_dict,
            gold,
            pred_sqls,
            db_path,
            temp_dir
        )

        if save_pred_sqls:
            suffix = "-pred-greedy-search-sqls.json" if mode == "greedy_search" else "-pred-major-voting-sqls.json"
            with open(pred_file[:-5] + suffix, "w", encoding="utf-8") as f:
                f.write(json.dumps(pred_sqls, indent=2 ,ensure_ascii=False))

        print(f"{mode} ACC: {final_acc}")
        if os.path.exists(temp_dir):
            shutil.rmtree(temp_dir)
        return final_acc, pred_sqls
    elif mode == "pass@k":
        all_scores = []
        for sample_idx in range(sampling_num):
            temp_dir = tempfile.mkdtemp(prefix="temp-") # , dir="./"
            print("temp_dir:", temp_dir)
            pred_sqls_for_specific_sample_idx = [sqls[sample_idx] for sqls in pred_sqls]
            output_results, _ = evaluate_spider2sql(
                gold_result_dir,
                eval_standard_dict,
                gold,
                pred_sqls_for_specific_sample_idx,
                db_path,
                temp_dir
            )
            all_scores.append([item['score'] for item in output_results])
            if os.path.exists(temp_dir):
                shutil.rmtree(temp_dir)
        print(all_scores)
        pass_at_k_scores = [1 if any(column) else 0 for column in zip(*all_scores)]
        final_acc = sum(pass_at_k_scores)/len(pass_at_k_scores)
        print(pass_at_k_scores)
        print(f"{mode} ACC: {final_acc}")
        return final_acc, None

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run evaluations for NLP models.")
    parser.add_argument("--mode", type=str, choices=["greedy_search", "major_voting", "pass@k"])
    parser.add_argument("--pred", type=str, default="../results/Qwen2.5-Coder-7B-Instruct-spider2.0-test-greedy.json", help="Predicted result directory")
    parser.add_argument('--gold', type = str, default = "./data/spider2.0/test.json")
    parser.add_argument('--gold_result_dir', type = str, default = "./data/spider2.0/gold_exec_result")
    parser.add_argument('--eval_standard', type = str, default = "./data/spider2.0/spider2lite_eval.jsonl")
    parser.add_argument('--db_path', type = str, default = "./data/spider2.0/databases")

    args = parser.parse_args()

    evaluate(args.mode, args.gold_result_dir, args.eval_standard, args.gold, args.pred, args.db_path)