pe_relu.py 6.59 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np


def positionalEncoding_vec(in_tensor, b):
    original_shape = in_tensor.shape
    in_tensor_flatten = in_tensor.reshape(torch.prod(torch.tensor(original_shape[:-1])), -1)
    proj = torch.einsum('ij, k -> ijk', in_tensor_flatten, b)  # shape (batch, in_tensor.size(1), freqNum)
    mapped_coords = torch.cat((torch.sin(proj), torch.cos(proj)), dim=1)  # shape (batch, 2*in_tensor.size(1), freqNum)
    output = mapped_coords.transpose(2, 1).contiguous().view(mapped_coords.size(0), -1)
    output = output.reshape(original_shape[:-1] + (-1,))
    return output


class MLPf(nn.Module):
    def __init__(self,
                 input_dim,
                 output_dim,
                 hidden_dim=256,
                 skip_layers=[4, 6],
                 num_layers=8,
                 use_pe=False,
                 pe_freq=10,
                 device='cuda',
                 ):
        super(MLPf, self).__init__()
        if use_pe:
            encoding_dimensions = 2 * 2 * pe_freq + input_dim  # only encode the pixel locations not latent codes
            self.b = torch.tensor([(2 ** j) * np.pi for j in range(pe_freq)], requires_grad=False).to(device)
        else:
            encoding_dimensions = input_dim

        self.hidden = nn.ModuleList()
        for i in range(num_layers):
            if i == 0:
                input_dims = encoding_dimensions
            elif i in skip_layers:
                input_dims = hidden_dim + encoding_dimensions
            else:
                input_dims = hidden_dim

            if i == num_layers - 1:
                # last layer
                self.hidden.append(nn.Linear(input_dims, output_dim, bias=True))
            else:
                self.hidden.append(nn.Linear(input_dims, hidden_dim, bias=True))

        self.skip_layers = skip_layers
        self.num_layers = num_layers
        self.use_pe = use_pe
        self.pe_freq = pe_freq

    def forward(self, x):
        if self.use_pe:
            coord = x[..., :2]
            pos = positionalEncoding_vec(coord, self.b)
            x = torch.cat([pos, x], dim=-1)

        input = x
        for i, layer in enumerate(self.hidden):
            if i > 0:
                x = F.relu(x)
            if i in self.skip_layers:
                x = torch.cat((x, input), -1)
            x = layer(x)
        return x


class MLPb(nn.Module):
    def __init__(self,
                 input_dim,
                 output_dim=3,
                 hidden_dim=256,
                 skip_layers=[4, 6],
                 num_layers=8,
                 use_pe=False,
                 pe_freq=10,
                 device='cuda',
                 ):
        super(MLPb, self).__init__()
        if use_pe:
            encoding_dimensions = 2 * input_dim * pe_freq
            self.b = torch.tensor([(2 ** j) * np.pi for j in range(pe_freq)], requires_grad=False).to(device)
        else:
            encoding_dimensions = input_dim

        self.hidden = nn.ModuleList()
        for i in range(num_layers):
            if i == 0:
                input_dims = encoding_dimensions
            elif i in skip_layers:
                input_dims = hidden_dim + encoding_dimensions
            else:
                input_dims = hidden_dim

            if i == num_layers - 1:
                # last layer
                self.hidden.append(nn.Linear(input_dims, output_dim, bias=True))
            else:
                self.hidden.append(nn.Linear(input_dims, hidden_dim, bias=True))

        self.skip_layers = skip_layers
        self.num_layers = num_layers
        self.use_pe = use_pe
        self.pe_freq = pe_freq

    def forward(self, x):
        if self.use_pe:
            pos = positionalEncoding_vec(x, self.b)
            x = pos

        input = x
        for i, layer in enumerate(self.hidden):
            if i > 0:
                x = F.relu(x)
            if i in self.skip_layers:
                x = torch.cat((x, input), -1)
            x = layer(x)
        return x


class GaussianActivation(nn.Module):
    def __init__(self, a=1., trainable=True):
        super().__init__()
        self.register_parameter('a', nn.Parameter(a*torch.ones(1), trainable))

    def forward(self, x):
        return torch.exp(-x**2/(2*self.a**2))


class MLP(nn.Module):
    def __init__(self,
                 input_dim,
                 output_dim,
                 hidden_dim=256,
                 skip_layers=[4],
                 num_layers=8,
                 act='relu',
                 use_pe=False,
                 pe_freq=10,
                 pe_dims=None,
                 device='cuda',
                 act_trainable=False,
                 **kwargs):
        super(MLP, self).__init__()
        self.pe_dims = pe_dims
        if use_pe:
            if pe_dims == None:
                encoding_dimensions = 2 * input_dim * pe_freq + input_dim
            else:
                encoding_dimensions = 2 * len(pe_dims) * pe_freq + input_dim
            self.b = torch.tensor([(2 ** j) * np.pi for j in range(pe_freq)], requires_grad=False).to(device)
        else:
            encoding_dimensions = input_dim

        self.hidden = nn.ModuleList()
        for i in range(num_layers):
            if i == 0:
                input_dims = encoding_dimensions
            elif i in skip_layers:
                input_dims = hidden_dim + encoding_dimensions
            else:
                input_dims = hidden_dim

            if act == 'relu':
                act_ = nn.ReLU(True)
            elif act == 'elu':
                act_ = nn.ELU(True)
            elif act == 'leakyrelu':
                act_ = nn.LeakyReLU(True)
            elif act == 'gaussian':
                act_ = GaussianActivation(a=kwargs['a'], trainable=act_trainable)
            else:
                raise Exception('unknown activation function!')

            if i == num_layers - 1:
                # last layer
                self.hidden.append(nn.Linear(input_dims, output_dim, bias=True))
            else:
                self.hidden.append(nn.Sequential(nn.Linear(input_dims, hidden_dim, bias=True), act_))

        self.skip_layers = skip_layers
        self.num_layers = num_layers
        self.use_pe = use_pe
        self.pe_freq = pe_freq

    def forward(self, x):
        if self.use_pe:
            coord = x[..., self.pe_dims] if self.pe_dims is not None else x
            pos = positionalEncoding_vec(coord, self.b)
            x = torch.cat([pos, x], dim=-1)

        input = x
        for i, layer in enumerate(self.hidden):
            if i in self.skip_layers:
                x = torch.cat((x, input), -1)
            x = layer(x)
        return x