nvp_simplified.py 11.8 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import numpy as np
import torch
from torch import masked_select, nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
import networks.pe_relu


class CouplingLayer(nn.Module):
    def __init__(self, map_st, projection, mask):
        super().__init__()
        self.map_st = map_st
        self.projection = projection
        self.mask = mask

    def forward(self, F, y):
        y1 = y * self.mask
        F_y1 = torch.cat([F, self.projection(y[..., self.mask.squeeze().bool()])], dim=-1)
        st = self.map_st(F_y1)
        s, t = torch.split(st, split_size_or_sections=1, dim=-1)
        s = torch.clamp(s, min=-8, max=8)
        x = y1 + (1 - self.mask) * ((y - t) * torch.exp(-s))
        ldj = (-s).sum(-1)

        return x, ldj

    def inverse(self, F, x):
        x1 = x * self.mask

        F_x1 = torch.cat([F, self.projection(x[..., self.mask.squeeze().bool()])], dim=-1)
        st = self.map_st(F_x1)
        s, t = torch.split(st, split_size_or_sections=1, dim=-1)
        s = torch.clamp(s, min=-8, max=8)
        y = x1 + (1 - self.mask) * (x * torch.exp(s) + t)
        ldj = s.sum(-1)

        return y, ldj


class MLP(nn.Module):
    def __init__(self, c_in, c_out, c_hiddens, act=nn.LeakyReLU, bn=nn.BatchNorm1d):
        super().__init__()
        layers = []
        d_in = c_in
        for d_out in c_hiddens:
            layers.append(nn.Linear(d_in, d_out))
            if bn is not None:
                layers.append(bn(d_out))
            layers.append(act())
            d_in = d_out
        layers.append(nn.Linear(d_in, c_out))
        self.mlp = nn.Sequential(*layers)
        self.c_out = c_out

    def forward(self, x):
        # x: B,...,C_in
        input_shape = x.shape
        C = input_shape[-1]
        _x = x.reshape(-1, C)  # X, C_in
        y = self.mlp(_x)  # X, C_out
        y = y.reshape(*input_shape[:-1], self.c_out)
        return y


def apply_homography_xy1(mat, xy1):
    """
    :param mat (*, 3, 3) (# * dims must match uv dims)
    :param xy1 (*, H, W, 3)
    :returns warped coordinates (*, H, W, 2)
    """
    out_h = torch.matmul(mat, xy1[..., None])
    return out_h[..., :2, 0] / (out_h[..., 2:, 0] + 1e-8)


def apply_homography(mat, uv):
    """
    :param mat (*, 3, 3) (# * dims must match uv dims)
    :param uv (*, H, W, 2)
    :returns warped coordinates (*, H, W, 2)
    """
    uv_h = torch.cat([uv, torch.ones_like(uv[..., :1])], dim=-1)  # (..., 3)
    return apply_homography_xy1(mat, uv_h)


class NVPSimplified(nn.Module):
    def __init__(
            self,
            n_layers,
            feature_dims,
            hidden_size,
            proj_dims,
            code_proj_hidden_size=[],
            proj_type="simple",
            pe_freq=4,
            normalization=True,
            affine=False,
            activation=nn.LeakyReLU,
            device='cuda',
    ):
        super().__init__()
        self._checkpoint = False
        self.affine = affine

        # make layers
        input_dims = 3
        normalization = nn.BatchNorm1d if normalization else None

        self.layers1 = nn.ModuleList()
        self.layers2 = nn.ModuleList()
        self.code_projectors = nn.ModuleList()
        self.layer_idx = [i for i in range(n_layers)]

        i = 0
        mask_selection = []
        while i < n_layers:
            mask_selection.append(torch.randperm(input_dims))
            i += input_dims
        mask_selection = torch.cat(mask_selection)

        if isinstance(hidden_size, int):
            hidden_size = [hidden_size]

        for i in self.layer_idx:
            # get mask
            mask2 = torch.zeros(input_dims, device=device)
            mask2[mask_selection[i]] = 1
            mask1 = 1 - mask2

            # get transformation
            map_st = nn.Sequential(
                MLP(
                    proj_dims + feature_dims,
                    2,
                    hidden_size,
                    bn=normalization,
                    act=activation,
                    )
            )

            proj = get_projection_layer(proj_dims=proj_dims, type=proj_type, pe_freq=pe_freq)
            self.layers1.append(CouplingLayer(map_st, proj, mask1[None, None, None]))

            # get code projector
            if len(code_proj_hidden_size) == 0:
                code_proj_hidden_size = [feature_dims]
            self.code_projectors.append(
                MLP(
                    feature_dims,
                    feature_dims,
                    code_proj_hidden_size,
                    bn=normalization,
                    act=activation,
                )
            )

        if self.affine:
            # this mlp takes time and depth as input and produce an affine transformation for x and y
            self.affine_mlp = networks.pe_relu.MLP(input_dim=2,
                                                   hidden_size=256,
                                                   n_layers=2,
                                                   skip_layers=[],
                                                   use_pe=True,
                                                   pe_dims=[1],
                                                   pe_freq=pe_freq,
                                                   output_dim=5).to(device)

    def _expand_features(self, F, x):
        _, N, K, _ = x.shape
        return F[:, None, None, :].expand(-1, N, K, -1)

    def _call(self, func, *args, **kwargs):
        if self._checkpoint:
            return checkpoint(func, *args, **kwargs)
        else:
            return func(*args, **kwargs)

    def invert_affine(self, a, b, c, d, tx, ty, zeros, ones):
        determinant = a * d - b * c

        inverse_determinant = 1.0 / determinant

        inverted_a = d * inverse_determinant
        inverted_b = -b * inverse_determinant
        inverted_c = -c * inverse_determinant
        inverted_d = a * inverse_determinant
        inverted_tx = (b * ty - d * tx) * inverse_determinant
        inverted_ty = (c * tx - a * ty) * inverse_determinant

        return torch.cat([inverted_a, inverted_b, inverted_tx,
                          inverted_c, inverted_d, inverted_ty,
                          zeros, zeros, ones], dim=-1).reshape(*a.shape[:-1], 3, 3)

    def get_affine(self, theta, inverse=False):
        """
        expands the 5 parameters into 3x3 affine transformation matrix
        :param theta (..., 5)
        :returns mat (..., 3, 3)
        """
        angle = theta[..., 0:1]
        scale1 = torch.exp(theta[..., 1:2])
        scale2 = torch.exp(theta[..., 3:4])
        cos = torch.cos(angle)
        sin = torch.sin(angle)
        a = cos * scale1
        b = -sin * scale1
        c = sin * scale2
        d = cos * scale2
        tx = theta[..., 2:3]
        ty = theta[..., 4:5]
        zeros = torch.zeros_like(a)
        ones = torch.ones_like(a)
        if inverse:
            return self.invert_affine(a, b, c, d, tx, ty, zeros, ones)
        else:
            return torch.cat([a, b, tx, c, d, ty, zeros, zeros, ones], dim=-1).reshape(*theta.shape[:-1], 3, 3)

    def _affine_input(self, t, x, inverse=False):
        depth = x[..., -1]  # [n_imgs, n_pts, n_samples]
        net_in = torch.stack([t[..., None].repeat(1, *x.shape[1:3]), depth], dim=-1)
        affine = self.get_affine(self.affine_mlp(net_in), inverse=inverse)  # [n_imgs, n_pts, n_samples, 3, 3]
        xy = x[..., :2]
        xy = apply_homography(affine, xy)
        x = torch.cat([xy, depth[..., None]], dim=-1)
        return x

    def forward(self, t, feat, x):
        y = x
        if self.affine:
            y = self._affine_input(t, y)
        for i in self.layer_idx:
            feat_i = self.code_projectors[i](feat)
            feat_i = self._expand_features(feat_i, y)
            l1 = self.layers1[i]
            y, _ = self._call(l1, feat_i, y)
        return y

    def inverse(self, t, feat, y):
        x = y
        for i in reversed(self.layer_idx):
            feat_i = self.code_projectors[i](feat)
            feat_i = self._expand_features(feat_i, x)
            l1 = self.layers1[i]
            x, _ = self._call(l1.inverse, feat_i, x)
        if self.affine:
            x = self._affine_input(t, x, inverse=True)
        return x


class BaseProjectionLayer(nn.Module):
    @property
    def proj_dims(self):
        raise NotImplementedError()

    def forward(self, x):
        raise NotImplementedError()


class IdentityProjection(BaseProjectionLayer):
    def __init__(self, input_dims):
        super().__init__()
        self._input_dims = input_dims

    @property
    def proj_dims(self):
        return self._input_dims

    def forward(self, x):
        return x


class ProjectionLayer(BaseProjectionLayer):
    def __init__(self, input_dims, proj_dims):
        super().__init__()
        self._proj_dims = proj_dims

        self.proj = nn.Sequential(
            nn.Linear(input_dims, 2 * proj_dims), nn.ReLU(), nn.Linear(2 * proj_dims, proj_dims)
        )

    @property
    def proj_dims(self):
        return self._proj_dims

    def forward(self, x):
        return self.proj(x)


class FixedPositionalEncoding(ProjectionLayer):
    def __init__(self, input_dims, frequency, proj_dims):
        super().__init__(input_dims, proj_dims)
        ll = frequency
        self.sigma = np.pi * torch.pow(2, torch.linspace(0, ll - 1, ll, device='cuda')).view(1, -1)
        self.proj = nn.Sequential(
            nn.Linear(input_dims + input_dims * ll * 2, proj_dims), nn.LeakyReLU()
        )

    @property
    def proj_dims(self):
        return self._proj_dims * 3

    def forward(self, x):
        encoded = torch.cat(
            [
                torch.sin(x[:, :, :, :, None] * self.sigma[None, None, None]),
                torch.cos(x[:, :, :, :, None] * self.sigma[None, None, None]),
            ],
            dim=-1,
        ).view(x.shape[0], x.shape[1], x.shape[2], -1)
        x = torch.cat([x, encoded], dim=-1)
        return self.proj(x)


class GaussianRandomFourierFeatures(ProjectionLayer):
    def __init__(self, input_dims, proj_dims, gamma=1.0):
        super().__init__(input_dims, proj_dims)
        self._two_pi = 2 * np.pi
        self._gamma = gamma
        ll = proj_dims // 2
        self.register_buffer("B", torch.randn(3, ll))

    def forward(self, x):
        xB = x.matmul(self.B * self._two_pi * self._gamma)
        return torch.cat([torch.cos(xB), torch.sin(xB)], dim=-1)


class GaborLayer(nn.Module):
    def __init__(self, input_dims, proj_dims, alpha=1., beta=1.0, weight_scale=128):
        super().__init__()
        self.linear = nn.Linear(input_dims, proj_dims)
        self.mu = nn.Parameter(2 * torch.rand(proj_dims, input_dims) - 1)
        self.gamma = nn.Parameter(
            torch.distributions.gamma.Gamma(alpha, beta).sample((proj_dims,))
        )
        self.linear.weight.data *= weight_scale * torch.sqrt(self.gamma[:, None])
        self.linear.bias.data.uniform_(-np.pi, np.pi)
        self.linear2 = nn.Linear(input_dims, proj_dims)
        self.linear2.weight.data.uniform_(
            -np.sqrt(weight_scale / proj_dims),
            np.sqrt(weight_scale / proj_dims)
        )

    def forward(self, x):
        D = (
                (x ** 2).sum(-1)[..., None]
                + (self.mu ** 2).sum(-1)[None, :]
                - 2 * x @ self.mu.T
        )
        return torch.sin(self.linear(x)) * torch.exp(-0.5 * D * self.gamma[None, :]) * self.linear2(x)


def get_projection_layer(**kwargs):
    type = kwargs["type"]

    if type == "identity":
        return IdentityProjection(3)
    elif type == "simple":
        return ProjectionLayer(2, kwargs.get("proj_dims", 128))
    elif type == "fixed_positional_encoding":
        return FixedPositionalEncoding(2, kwargs.get("pe_freq", 4), kwargs.get("proj_dims", 128))
    elif type == "gaussianrff":
        return GaussianRandomFourierFeatures(
            3, kwargs.get("proj_dims", 10), kwargs.get("gamma", 1.0)
        )
    elif type == 'gabor':
        return GaborLayer(3, kwargs.get("proj_dims", 128))