mfn.py 4.39 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
import sys
sys.path.append('../')
from util import sigma2alpha


class MFNBase(nn.Module):
    """
    Multiplicative filter network base class.

    Expects the child class to define the 'filters' attribute, which should be
    a nn.ModuleList of n_layers+1 filters with output equal to hidden_size.
    """

    def __init__(
            self, hidden_size, out_size, n_layers, weight_scale, bias=True, output_act=False
    ):
        super().__init__()

        self.linear = nn.ModuleList(
            [nn.Linear(hidden_size, hidden_size, bias) for _ in range(n_layers)]
        )
        self.output_linear = nn.Linear(hidden_size, out_size)
        self.output_act = output_act

        for lin in self.linear:
            lin.weight.data.uniform_(
                -np.sqrt(weight_scale / hidden_size),
                np.sqrt(weight_scale / hidden_size),
            )

        return

    def forward(self, x):
        out = self.filters[0](x)
        for i in range(1, len(self.filters)):
            out = self.filters[i](x) * self.linear[i - 1](out)
        out = self.output_linear(out)

        if self.output_act:
            out = torch.sin(out)

        return out


class FourierLayer(nn.Module):
    """
    Sine filter as used in FourierNet.
    """

    def __init__(self, in_features, out_features, weight_scale):
        super().__init__()
        self.linear = nn.Linear(in_features, out_features)
        self.linear.weight.data *= weight_scale  # gamma
        self.linear.bias.data.uniform_(-np.pi, np.pi)
        return

    def forward(self, x):
        return torch.sin(self.linear(x))


class FourierNet(MFNBase):
    def __init__(
            self,
            in_size,
            hidden_size,
            out_size,
            n_layers=3,
            input_scale=256.0,
            weight_scale=1.0,
            bias=True,
            output_act=False,
    ):
        super().__init__(
            hidden_size, out_size, n_layers, weight_scale, bias, output_act
        )
        self.filters = nn.ModuleList(
            [
                FourierLayer(in_size, hidden_size, input_scale / np.sqrt(n_layers + 1))
                for _ in range(n_layers + 1)
            ]
        )


class GaborLayer(nn.Module):
    """
    Gabor-like filter as used in GaborNet.
    """

    def __init__(self, in_features, out_features, weight_scale, alpha=1.0, beta=1.0):
        super().__init__()
        self.linear = nn.Linear(in_features, out_features)
        self.mu = nn.Parameter(2 * torch.rand(out_features, in_features) - 1)
        self.gamma = nn.Parameter(
            torch.distributions.gamma.Gamma(alpha, beta).sample((out_features,))
        )
        self.linear.weight.data *= weight_scale * torch.sqrt(self.gamma[:, None])
        self.linear.bias.data.uniform_(-np.pi, np.pi)
        return

    def forward(self, x):
        D = (
                (x ** 2).sum(-1)[..., None]
                + (self.mu ** 2).sum(-1)[None, :]
                - 2 * x @ self.mu.T
        )
        return torch.sin(self.linear(x)) * torch.exp(-0.5 * D * self.gamma[None, :])


class GaborNet(MFNBase):
    def __init__(
            self,
            in_size,
            hidden_size,
            out_size,
            n_layers=3,
            input_scale=256.0,
            weight_scale=1.0,
            alpha=6.0,
            beta=1.0,
            bias=True,
            output_act=False,
    ):
        super().__init__(
            hidden_size, out_size, n_layers, weight_scale, bias, output_act
        )
        self.filters = nn.ModuleList(
            [
                GaborLayer(
                    in_size,
                    hidden_size,
                    input_scale / np.sqrt(n_layers + 1),
                    alpha / (n_layers + 1),
                    beta,
                    )
                for _ in range(n_layers + 1)
            ]
        )

    def gradient(self, x):
        # only for the color mlp
        x.requires_grad_(True)
        y = self.forward(x)[..., -1:]
        y = F.softplus(y - 1.)
        y = sigma2alpha(y)
        d_output = torch.ones_like(y, requires_grad=False, device=y.device)
        gradients = torch.autograd.grad(
            outputs=y,
            inputs=x,
            grad_outputs=d_output,
            create_graph=True,
            retain_graph=True,
            only_inputs=True)[0]
        return gradients.unsqueeze(1)