raft.py 7.16 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import glob
import json
import imageio
import numpy as np
import cv2
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset
import multiprocessing as mp
from util import normalize_coords, gen_grid_np


def get_sample_weights(flow_stats):
    sample_weights = {}
    for k in flow_stats.keys():
        sample_weights[k] = {}
        total_num = np.array(list(flow_stats[k].values())).sum()
        for j in flow_stats[k].keys():
            sample_weights[k][j] = 1. * flow_stats[k][j] / total_num
    return sample_weights


class RAFTExhaustiveDataset(Dataset):
    def __init__(self, args, max_interval=None):
        self.args = args
        self.seq_dir = args.data_dir
        self.seq_name = os.path.basename(self.seq_dir.rstrip('/'))
        self.img_dir = os.path.join(self.seq_dir, 'color')
        self.flow_dir = os.path.join(self.seq_dir, 'raft_exhaustive')
        img_names = sorted(os.listdir(self.img_dir))
        self.num_imgs = min(self.args.num_imgs, len(img_names))
        self.img_names = img_names[:self.num_imgs]

        h, w, _ = imageio.imread(os.path.join(self.img_dir, img_names[0])).shape
        self.h, self.w = h, w
        max_interval = self.num_imgs - 1 if not max_interval else max_interval
        self.max_interval = mp.Value('i', max_interval)
        self.num_pts = self.args.num_pts
        self.grid = gen_grid_np(self.h, self.w)
        flow_stats = json.load(open(os.path.join(self.seq_dir, 'flow_stats.json')))
        self.sample_weights = get_sample_weights(flow_stats)

    def __len__(self):
        return self.num_imgs * 100000

    def set_max_interval(self, max_interval):
        self.max_interval.value = min(max_interval, self.num_imgs - 1)

    def increase_max_interval_by(self, increment):
        curr_max_interval = self.max_interval.value
        self.max_interval.value = min(curr_max_interval + increment, self.num_imgs - 1)

    def __getitem__(self, idx):
        cached_flow_pred_dir = os.path.join('out', '{}_{}'.format(self.args.expname, self.seq_name), 'flow')
        cached_flow_pred_files = sorted(glob.glob(os.path.join(cached_flow_pred_dir, '*')))
        flow_error_file = os.path.join(os.path.dirname(cached_flow_pred_dir), 'flow_error.txt')
        if os.path.exists(flow_error_file):
            flow_error = np.loadtxt(flow_error_file)
            id1_sample_weights = flow_error / np.sum(flow_error)
            id1 = np.random.choice(self.num_imgs, p=id1_sample_weights)
        else:
            id1 = idx % self.num_imgs

        img_name1 = self.img_names[id1]
        max_interval = min(self.max_interval.value, self.num_imgs - 1)
        img2_candidates = sorted(list(self.sample_weights[img_name1].keys()))
        img2_candidates = img2_candidates[max(id1 - max_interval, 0):min(id1 + max_interval, self.num_imgs - 1)]

        # sample more often from i-1 and i+1
        id2s = np.array([self.img_names.index(n) for n in img2_candidates])
        sample_weights = np.array([self.sample_weights[img_name1][i] for i in img2_candidates])
        sample_weights /= np.sum(sample_weights)
        sample_weights[np.abs(id2s - id1) <= 1] = 0.5
        sample_weights /= np.sum(sample_weights)

        img_name2 = np.random.choice(img2_candidates, p=sample_weights)
        id2 = self.img_names.index(img_name2)
        frame_interval = abs(id1 - id2)

        # read image, flow and confidence
        img1 = imageio.imread(os.path.join(self.img_dir, img_name1)) / 255.
        img2 = imageio.imread(os.path.join(self.img_dir, img_name2)) / 255.

        flow_file = os.path.join(self.flow_dir, '{}_{}.npy'.format(img_name1, img_name2))
        flow = np.load(flow_file)
        mask_file = flow_file.replace('raft_exhaustive', 'raft_masks').replace('.npy', '.png')
        masks = imageio.imread(mask_file) / 255.

        coord1 = self.grid
        coord2 = self.grid + flow

        cycle_consistency_mask = masks[..., 0] > 0
        occlusion_mask = masks[..., 1] > 0

        if frame_interval == 1:
            mask = np.ones_like(cycle_consistency_mask)
        else:
            mask = cycle_consistency_mask | occlusion_mask

        if mask.sum() == 0:
            invalid = True
            mask = np.ones_like(cycle_consistency_mask)
        else:
            invalid = False

        if len(cached_flow_pred_files) > 0 and self.args.use_error_map:
            cached_flow_pred_file = cached_flow_pred_files[id1]
            assert img_name1 + '_' in cached_flow_pred_file
            sup_flow_file = os.path.join(self.flow_dir, os.path.basename(cached_flow_pred_file))
            pred_flow = np.load(cached_flow_pred_file)
            sup_flow = np.load(sup_flow_file)
            error_map = np.linalg.norm(pred_flow - sup_flow, axis=-1)
            error_map = cv2.GaussianBlur(error_map, (5, 5), 0)
            error_selected = error_map[mask]
            prob = error_selected / np.sum(error_selected)
            select_ids_error = np.random.choice(mask.sum(), self.num_pts, replace=(mask.sum() < self.num_pts), p=prob)
            select_ids_random = np.random.choice(mask.sum(), self.num_pts, replace=(mask.sum() < self.num_pts))
            select_ids = np.random.choice(np.concatenate([select_ids_error, select_ids_random]), self.num_pts,
                                          replace=False)
        else:
            if self.args.use_count_map:
                count_map = imageio.imread(os.path.join(self.seq_dir, 'count_maps', img_name1.replace('.jpg', '.png')))
                pixel_sample_weight = 1 / np.sqrt(count_map + 1.)
                pixel_sample_weight = pixel_sample_weight[mask]
                pixel_sample_weight /= pixel_sample_weight.sum()
                select_ids = np.random.choice(mask.sum(), self.num_pts, replace=(mask.sum() < self.num_pts),
                                              p=pixel_sample_weight)
            else:
                select_ids = np.random.choice(mask.sum(), self.num_pts, replace=(mask.sum() < self.num_pts))

        pair_weight = np.cos((frame_interval - 1.) / max_interval * np.pi / 2)

        pts1 = torch.from_numpy(coord1[mask][select_ids]).float()
        pts2 = torch.from_numpy(coord2[mask][select_ids]).float()
        pts2_normed = normalize_coords(pts2, self.h, self.w)[None, None]

        covisible_mask = torch.from_numpy(cycle_consistency_mask[mask][select_ids]).float()[..., None]
        weights = torch.ones_like(covisible_mask) * pair_weight

        gt_rgb1 = torch.from_numpy(img1[mask][select_ids]).float()
        gt_rgb2 = F.grid_sample(torch.from_numpy(img2).float().permute(2, 0, 1)[None], pts2_normed,
                                align_corners=True).squeeze().T

        if invalid:
            weights = torch.zeros_like(weights)

        if np.random.choice([0, 1]):
            id1, id2, pts1, pts2, gt_rgb1, gt_rgb2 = id2, id1, pts2, pts1, gt_rgb2, gt_rgb1
            weights[covisible_mask == 0.] = 0

        data = {'ids1': id1,
                'ids2': id2,
                'pts1': pts1,  # [n_pts, 2]
                'pts2': pts2,  # [n_pts, 2]
                'gt_rgb1': gt_rgb1,  # [n_pts, 3]
                'gt_rgb2': gt_rgb2,
                'weights': weights,  # [n_pts, 1]
                'covisible_mask': covisible_mask,  # [n_pts, 1]
                }
        return data