train.py 8.87 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import logging
import os
from logging import Logger
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Optional

import torch
import torch.distributed
import wandb
from datasets.utils import disable_progress_bars
from datasets.utils.logging import set_verbosity
from peft import LoraConfig, get_peft_model  # pyright: ignore
from transformers import (
    AutoProcessor,
    Qwen2VLForConditionalGeneration,
    Trainer,
    TrainerCallback,
    TrainingArguments,
)
from transformers.integrations import WandbCallback
from transformers.trainer_callback import TrainerControl, TrainerState
from transformers.trainer_utils import get_last_checkpoint

from olmocr.train.core.cli import make_cli, save_config, to_native_types
from olmocr.train.core.config import TrainConfig
from olmocr.train.core.loggers import get_logger
from olmocr.train.core.paths import copy_dir, join_path
from olmocr.train.core.state import BeakerState

from .utils import (
    RunName,
    TruncatingCollator,
    get_local_dir,
    log_trainable_parameters,
    make_dataset,
    setup_environment,
)


class CheckpointUploadCallback(TrainerCallback):
    def __init__(self, save_path: str, logger: Optional[Logger] = None):
        self.save_path = save_path
        self.logger = logger or get_logger(self.__class__.__name__)

    def on_save(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
        if state.is_local_process_zero:
            latest_checkpoint = get_last_checkpoint(args.output_dir)
            if not latest_checkpoint:
                return

            dir_name = Path(latest_checkpoint).name
            copy_dir(str(latest_checkpoint), f"{self.save_path}/{dir_name}")
            self.logger.info("Saved checkpoint to %s", f"{self.save_path}/{dir_name}")


def update_wandb_config(config: TrainConfig, trainer: Trainer, model: torch.nn.Module):
    # finding wandb callback
    callbacks = [c for c in trainer.callback_handler.callbacks if isinstance(c, WandbCallback)]  # pyright: ignore
    if not callbacks:
        raise ValueError("WandbCallback not found in trainer callbacks")

    wandb_callback = callbacks[0]
    peft_config = to_native_types(getattr(model, "peft_config", {}))
    script_config = to_native_types(config)
    beaker_envs = {k: v for k, v in os.environ.items() if k.lower().startswith("beaker")}

    on_setup_fn = wandb_callback.setup

    def setup_and_update(args, state, model, **kwargs):
        on_setup_fn(args=args, state=state, model=model, **kwargs)
        wandb.config.update({"peft": peft_config}, allow_val_change=True)
        wandb.config.update({"script": script_config}, allow_val_change=True)
        wandb.config.update({"beaker": beaker_envs}, allow_val_change=True)
        if (run := wandb.run) and (beaker_url := BeakerState().url):
            run.notes = beaker_url

    wandb_callback.setup = setup_and_update


def get_rank() -> int:
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_rank()
    return 0


def run_train(config: TrainConfig):
    if get_rank() == 0:
        logger_level = logging.INFO
    else:
        logger_level = logging.WARN
        disable_progress_bars()

    logger = get_logger(__name__, level=logger_level)
    set_verbosity(logger_level)

    run_name = RunName.get(config)

    setup_environment(aws_config=config.aws, wandb_config=config.wandb, WANDB_RUN_GROUP=run_name.group)

    processor = AutoProcessor.from_pretrained(config.model.name_or_path, trust_remote_code=True)
    train_dataset, valid_dataset = make_dataset(config, processor)
    logger.info(train_dataset)
    logger.info(valid_dataset)

    if "qwen" in config.model.name_or_path.lower():
        model = Qwen2VLForConditionalGeneration.from_pretrained(
            config.model.name_or_path, torch_dtype=torch.bfloat16, _attn_implementation="flash_attention_2" if config.model.use_flash_attn else None
        )
    else:
        from .molmo.config_molmo import MolmoConfig
        from .molmo.modeling_molmo import MolmoForCausalLM

        model_config = MolmoConfig.from_pretrained(config.model.name_or_path, trust_remote_code=True)

        if model_config.max_position_embeddings < config.generate.max_length:
            logger.warning(
                f"ALERT, force adjusting model config max_position_embeddings upwards from {model_config.max_position_embeddings} to {config.generate.max_length}"
            )
            model_config.max_position_embeddings = config.generate.max_length

        if config.model.use_flash_attn:
            model_config.attention_type = "flash"

        model = MolmoForCausalLM.from_pretrained(config.model.name_or_path, torch_dtype=torch.bfloat16, config=model_config, trust_remote_code=True)

    logger.info(model)

    if config.lora is not None:
        peft_config = LoraConfig(
            r=config.lora.rank,
            lora_alpha=config.lora.alpha,
            lora_dropout=config.lora.dropout,
            bias=config.lora.bias,  # pyright: ignore
            task_type=config.lora.task_type,
            target_modules=list(config.lora.target_modules),
        )
        model = get_peft_model(model=model, peft_config=peft_config)
        log_trainable_parameters(model=model, logger=logger)

    save_path = join_path("", config.save.path, run_name.run)

    # Make sure directory exists if local
    if not save_path.startswith("s3://"):
        os.makedirs(os.path.dirname(save_path), exist_ok=True)

    save_config(config, join_path("", save_path, "config.yaml"))  # pyright: ignore

    with TemporaryDirectory() as output_dir:
        training_args = TrainingArguments(
            run_name=run_name.run,
            logging_steps=config.hparams.log_every_steps,
            output_dir=output_dir,
            eval_strategy="steps",
            report_to="wandb",
            # report_to=[],  # disable logging to wandb, we will use a custom callback
            optim=config.hparams.optim,
            eval_steps=config.hparams.eval_every_steps,
            learning_rate=config.hparams.learning_rate,
            per_device_train_batch_size=config.hparams.batch_size,
            per_device_eval_batch_size=config.hparams.eval_batch_size or config.hparams.batch_size,
            gradient_checkpointing=config.hparams.gradient_checkpointing,
            gradient_checkpointing_kwargs=(
                dict(use_reentrant=False)  # from this issue: https://github.com/huggingface/peft/issues/1142
                if config.hparams.gradient_checkpointing and config.lora is not None
                else {}
            ),
            gradient_accumulation_steps=config.hparams.gradient_accumulation_steps,
            max_steps=config.hparams.max_steps,
            weight_decay=config.hparams.weight_decay,
            dataloader_num_workers=config.max_workers,
            load_best_model_at_end=True,
            save_strategy="steps",
            ddp_find_unused_parameters=config.hparams.find_unused_parameters,
            save_steps=config.save.save_every_steps,
            warmup_steps=config.hparams.warmup_steps,
            warmup_ratio=config.hparams.warmup_ratio,
            bf16=True,
            label_names=["labels"],  # fix from https://github.com/huggingface/transformers/issues/22885
            max_grad_norm=config.hparams.clip_grad_norm,
            remove_unused_columns=False,
            eval_on_start=True,
            metric_for_best_model=config.valid_data.metric_for_best_model,
        )

        data_collator = TruncatingCollator(max_length=config.generate.max_length)

        checkpoint_callback = CheckpointUploadCallback(save_path=save_path, logger=logger)

        # Initialize Trainer
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=valid_dataset,
            tokenizer=processor.tokenizer,
            data_collator=data_collator,
            callbacks=[checkpoint_callback],
        )

        # Train the model
        trainer.train()  # pyright: ignore

        if get_rank() == 0:
            with get_local_dir(join_path("", save_path, "best")) as best_dir:
                if config.lora is not None:
                    logger.info("Merging LoRA adapters into the base model...")
                    model = model.merge_and_unload()
                    logger.info("LoRA adapters merged successfully.")

                model.save_pretrained(best_dir)

                logger.info("Saved best model to %s", best_dir)

        # Uncomment to test speed of data loader
        # train_dataloader = DataLoader(formatted_dataset["train"], batch_size=1, num_workers=4, shuffle=False)
        # for entry in tqdm(train_dataloader):
        #     print("Step!")
        #     model.forward(**{k: v.to("cuda:0") for (k,v) in entry.items()})


def main():
    train_config = make_cli(TrainConfig)  # pyright: ignore
    run_train(train_config)


if __name__ == "__main__":
    main()