dataprep.py 6.93 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import base64
import random
from io import BytesIO
from typing import Union

import numpy as np
import torch  # Make sure to import torch as it's used in the DataCollator
from PIL import Image

from olmocr.data.renderpdf import render_pdf_to_base64png
from olmocr.prompts import build_finetuning_prompt
from olmocr.prompts.anchor import get_anchor_text


def prepare_data_for_qwen2_training(example, processor, target_longest_image_dim: Union[int, list[int]], target_anchor_text_len: Union[int, list[int]]):
    if isinstance(target_longest_image_dim, list):
        target_longest_image_dim = random.choice(target_longest_image_dim)

    if isinstance(target_anchor_text_len, list):
        target_anchor_text_len = random.choice(target_anchor_text_len)

    anchor_text = get_anchor_text(example["local_pdf_path"], example["page_num"], pdf_engine="pdfreport", target_length=target_anchor_text_len)
    base64_page_image = render_pdf_to_base64png(example["local_pdf_path"], example["page_num"], target_longest_image_dim=target_longest_image_dim)

    # Prepare messages
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": base64_page_image},
                {"type": "text", "text": build_finetuning_prompt(anchor_text)},
            ],
        }
    ]
    # Apply chat template to get the text
    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

    # Decode image from base64
    main_image = Image.open(BytesIO(base64.b64decode(base64_page_image)))

    # Process inputs using processor
    inputs = processor(
        text=[text],
        images=[main_image],
        padding=True,
        return_tensors="np",
    )

    # Get labels by tokenizing the output text
    labels = processor(text=[example["response"]], padding=True, return_tensors="np")

    # Append an <|im_end|>\n" to the labels, because this is what it would look like
    # if we passed the whole message stream in there
    im_end_tokens = processor.tokenizer("<|im_end|>\n", add_special_tokens=False)["input_ids"]
    im_end_tokens = np.array(im_end_tokens, dtype=inputs.input_ids.dtype)  # Ensure correct dtype

    # Handle the case where labels['input_ids'] is empty
    if labels["input_ids"].shape[1] == 0:
        labels_input_ids_0 = np.array([], dtype=inputs.input_ids.dtype)
    else:
        labels_input_ids_0 = labels["input_ids"][0].astype(inputs.input_ids.dtype)

    labels["input_ids"] = np.concatenate([labels_input_ids_0, im_end_tokens])
    labels["input_ids"] = np.expand_dims(labels["input_ids"], axis=0)

    # Concatenate input_ids and labels
    input_ids = np.concatenate([inputs.input_ids[0], labels.input_ids[0]], axis=0)

    # All columns will participate in attention fully
    attention_mask = np.ones_like(input_ids)

    # Create labels, masking the input portion with -100
    labels_full = np.full_like(input_ids, fill_value=-100)
    labels_full[len(inputs.input_ids[0]) :] = labels.input_ids[0]

    # TODO Maybe cap the max length

    # Return as dict, including pixel_values
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "labels": labels_full,
        "pixel_values": inputs.pixel_values,
        "image_grid_thw": inputs["image_grid_thw"][0],
    }


def batch_prepare_data_for_qwen2_training(batch, processor, target_longest_image_dim: list[int], target_anchor_text_len: list[int]):
    # Process each example in the batch using the helper function
    processed_examples = []
    for i in range(len(batch["response"])):
        example = {"local_pdf_path": batch["local_pdf_path"][i], "page_num": batch["page_num"][i], "response": batch["response"][i]}
        processed_example = prepare_data_for_qwen2_training(
            example, processor, target_longest_image_dim=target_longest_image_dim, target_anchor_text_len=target_anchor_text_len
        )
        processed_examples.append(processed_example)

    return {
        "input_ids": [x["input_ids"] for x in processed_examples],
        "attention_mask": [x["attention_mask"] for x in processed_examples],
        "labels": [x["labels"] for x in processed_examples],
        "pixel_values": [x["pixel_values"] for x in processed_examples],
        "image_grid_thw": [x["image_grid_thw"] for x in processed_examples],
    }


def prepare_data_for_molmo_training(example, processor, target_longest_image_dim: Union[int, list[int]], target_anchor_text_len: Union[int, list[int]]):
    if isinstance(target_longest_image_dim, list):
        target_longest_image_dim = random.choice(target_longest_image_dim)

    if isinstance(target_anchor_text_len, list):
        target_anchor_text_len = random.choice(target_anchor_text_len)

    anchor_text = get_anchor_text(example["local_pdf_path"], example["page_num"], pdf_engine="pdfreport", target_length=target_anchor_text_len)
    base64_page_image = render_pdf_to_base64png(example["local_pdf_path"], example["page_num"], target_longest_image_dim=target_longest_image_dim)

    # Decode image from base64
    main_image = Image.open(BytesIO(base64.b64decode(base64_page_image)))

    # Process the input text and image
    inputs = processor.process(
        images=[main_image],
        text=build_finetuning_prompt(anchor_text),
    )

    # Get labels by tokenizing the output text
    labels = processor.tokenizer(example["response"], return_tensors="np")["input_ids"][0]
    # Concatenate input_ids and labels
    full_input_ids = torch.cat([inputs["input_ids"], torch.from_numpy(labels)], dim=0)

    labels_full = torch.cat([torch.ones_like(inputs["input_ids"]) * -100, torch.from_numpy(labels)], dim=0)

    # Create a full attention mask
    attention_mask = torch.ones_like(full_input_ids)

    # image_input_idx does not need adjustment as images are inserted before labels
    image_input_idx = inputs["image_input_idx"]

    return {
        "input_ids": full_input_ids,
        "labels": labels_full,
        "images": inputs["images"],
        "image_input_idx": image_input_idx,
        "image_masks": inputs["image_masks"],
        "attention_mask": attention_mask,
    }


def batch_prepare_data_for_molmo_training(batch, processor, target_longest_image_dim: list[int], target_anchor_text_len: list[int]):
    # Assume batch size 1 and process the single example
    example = {"local_pdf_path": batch["local_pdf_path"][0], "page_num": batch["page_num"][0], "response": batch["response"][0]}
    processed_example = prepare_data_for_molmo_training(
        example, processor, target_longest_image_dim=target_longest_image_dim, target_anchor_text_len=target_anchor_text_len
    )

    # Return in the same format as the qwen2 function
    return {
        "input_ids": [processed_example["input_ids"]],
        "attention_mask": [processed_example["attention_mask"]],
        "labels": [processed_example["labels"]],
        "images": [processed_example["images"]],
        "image_input_idx": [processed_example["image_input_idx"]],
        "image_masks": [processed_example["image_masks"]],
    }