draw_boxplots.py 6.04 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
"""

Boxplots of Elo ratings with 95% confidence intervals for each method.

Invocation:
    python draw_boxplots.py results.txt boxplots.png

@kylel

"""

import hashlib
import re
from pathlib import Path

import click
import matplotlib.font_manager as font_manager
import matplotlib.pyplot as plt
import numpy as np
import requests

# AI2 Colors
AI2_PINK = "#f0529c"
AI2_DARK_TEAL = "#0a3235"
AI2_TEAL = "#105257"

# Name mappings
NAME_DISPLAY_MAP = {"pdelf": "olmOCR", "mineru": "MinerU", "marker": "Marker", "gotocr_format": "GOTOCR"}


def download_and_cache_file(url, cache_dir=None):
    """Download a file and cache it locally."""
    if cache_dir is None:
        cache_dir = Path.home() / ".cache" / "elo_plot"

    cache_dir = Path(cache_dir)
    cache_dir.mkdir(parents=True, exist_ok=True)

    # Create filename from URL hash
    url_hash = hashlib.sha256(url.encode()).hexdigest()[:12]
    file_name = url.split("/")[-1]
    cached_path = cache_dir / f"{url_hash}_{file_name}"

    if not cached_path.exists():
        response = requests.get(url, stream=True)
        response.raise_for_status()

        with open(cached_path, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)

    return str(cached_path)


def parse_elo_data(file_path):
    """Parse Elo ratings data from a text file."""
    with open(file_path, "r") as f:
        content = f.read()

    # Regular expression to match the data lines
    pattern = r"(\w+)\s+(\d+\.\d+)\s*±\s*(\d+\.\d+)\s*\[(\d+\.\d+),\s*(\d+\.\d+)\]"
    matches = re.finditer(pattern, content)

    # Initialize lists to store data
    names = []
    medians = []
    errors = []
    ci_low = []
    ci_high = []

    for match in matches:
        names.append(match.group(1))
        medians.append(float(match.group(2)))
        errors.append(float(match.group(3)))
        ci_low.append(float(match.group(4)))
        ci_high.append(float(match.group(5)))

    return names, medians, errors, ci_low, ci_high


def create_boxplot(names, medians, errors, ci_low, ci_high, output_path, font_path):
    """Create and save a boxplot of Elo ratings."""
    # Set up Manrope font
    font_manager.fontManager.addfont(font_path)
    plt.rcParams["font.family"] = "Manrope"
    plt.rcParams["font.weight"] = "medium"

    # Define colors - pdelf in pink, others in shades of teal/grey based on performance
    max_median = max(medians)
    colors = []
    for i, median in enumerate(medians):
        if names[i] == "pdelf":
            colors.append(AI2_PINK)
        else:
            # Calculate a shade between dark teal and grey based on performance
            performance_ratio = (median - min(medians)) / (max_median - min(medians))
            base_color = np.array(tuple(int(AI2_DARK_TEAL[i : i + 2], 16) for i in (1, 3, 5))) / 255.0
            grey = np.array([0.7, 0.7, 0.7])  # Light grey
            color = tuple(np.clip(base_color * performance_ratio + grey * (1 - performance_ratio), 0, 1))
            colors.append(color)

    # Create box plot data
    box_data = []
    for i in range(len(names)):
        q1 = medians[i] - errors[i]
        q3 = medians[i] + errors[i]
        box_data.append([ci_low[i], q1, medians[i], q3, ci_high[i]])

    # Create box plot with smaller width and spacing
    plt.figure(figsize=(4, 4))
    bp = plt.boxplot(
        box_data,
        labels=[NAME_DISPLAY_MAP[name] for name in names],
        whis=1.5,
        patch_artist=True,
        widths=0.15,  # Make boxes much narrower
        medianprops=dict(color="black"),  # Make median line black
        positions=np.arange(len(names)) * 0.25,
    )  # Reduce spacing between boxes significantly

    # Color each box
    for patch, color in zip(bp["boxes"], colors):
        patch.set_facecolor(color)
        patch.set_alpha(0.8)

    # Style the plot
    # plt.ylabel("Elo Rating", fontsize=12, color=AI2_DARK_TEAL)
    plt.xticks(
        np.arange(len(names)) * 0.25,  # Match positions from boxplot
        [NAME_DISPLAY_MAP[name] for name in names],
        rotation=45,
        ha="right",
        color=AI2_DARK_TEAL,
    )
    plt.yticks(color=AI2_DARK_TEAL)

    # Set x-axis limits to maintain proper spacing
    plt.xlim(-0.1, (len(names) - 1) * 0.25 + 0.1)

    # Remove the title and adjust the layout
    plt.tight_layout()

    # Remove spines
    for spine in plt.gca().spines.values():
        spine.set_visible(False)

    # Add left spine only
    plt.gca().spines["left"].set_visible(True)
    plt.gca().spines["left"].set_color(AI2_DARK_TEAL)
    plt.gca().spines["left"].set_linewidth(0.5)

    # Add bottom spine only
    plt.gca().spines["bottom"].set_visible(True)
    plt.gca().spines["bottom"].set_color(AI2_DARK_TEAL)
    plt.gca().spines["bottom"].set_linewidth(0.5)

    plt.savefig(output_path, dpi=300, bbox_inches="tight", transparent=True)
    plt.close()


@click.command()
@click.argument("input_file", type=click.Path(exists=True))
@click.argument("output_file", type=click.Path())
@click.option(
    "--manrope-medium-font-path",
    type=str,
    default="https://dolma-artifacts.org/Manrope-Medium.ttf",
    help="Path to the Manrope Medium font file (local path or URL)",
)
def main(input_file, output_file, manrope_medium_font_path):
    """Generate a boxplot from Elo ratings data.

    INPUT_FILE: Path to the text file containing Elo ratings data
    OUTPUT_FILE: Path where the plot should be saved
    """
    try:
        # Handle font path - download and cache if it's a URL
        if manrope_medium_font_path.startswith(("http://", "https://")):
            font_path = download_and_cache_file(manrope_medium_font_path)
        else:
            font_path = manrope_medium_font_path

        # Parse the data
        names, medians, errors, ci_low, ci_high = parse_elo_data(input_file)

        # Create and save the plot
        create_boxplot(names, medians, errors, ci_low, ci_high, output_file, font_path)
        click.echo(f"Plot successfully saved to {output_file}")

    except Exception as e:
        click.echo(f"Error: {str(e)}", err=True)
        raise click.Abort()


if __name__ == "__main__":
    main()