olmocr_ocr.py 2.32 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import torch
import base64
import urllib.request

from io import BytesIO
from PIL import Image
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration

from olmocr.data.renderpdf import render_pdf_to_base64png
from olmocr.prompts import build_finetuning_prompt
from olmocr.prompts.anchor import get_anchor_text

# Initialize the model
model = Qwen2VLForConditionalGeneration.from_pretrained("allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16).eval()
processor = AutoProcessor.from_pretrained("allenai/olmOCR-7B-0225-preview")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# Grab a sample PDF
urllib.request.urlretrieve("https://molmo.allenai.org/paper.pdf", "./paper.pdf")

# Render page 1 to an image
image_base64 = render_pdf_to_base64png("./paper.pdf", 1, target_longest_image_dim=1024)

# Build the prompt, using document metadata
anchor_text = get_anchor_text("./paper.pdf", 1, pdf_engine="pdfreport", target_length=4000)
prompt = build_finetuning_prompt(anchor_text)
print('prompt:', prompt)

# Build the full prompt
messages = [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": prompt},
                    {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
                ],
            }
        ]

# Apply the chat template and processor
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
main_image = Image.open(BytesIO(base64.b64decode(image_base64)))

inputs = processor(
    text=[text],
    images=[main_image],
    padding=True,
    return_tensors="pt",
)
inputs = {key: value.to(device) for (key, value) in inputs.items()}


# Generate the output
output = model.generate(
            **inputs,
            temperature=0.8,
            max_new_tokens=50,
            num_return_sequences=1,
            do_sample=True,
        )

# Decode the output
prompt_length = inputs["input_ids"].shape[1]
new_tokens = output[:, prompt_length:]
text_output = processor.tokenizer.batch_decode(
    new_tokens, skip_special_tokens=True
)

print(text_output)
# ['{"primary_language":"en","is_rotation_valid":true,"rotation_correction":0,"is_table":false,"is_diagram":false,"natural_text":"Molmo and PixMo:\\nOpen Weights and Open Data\\nfor State-of-the']