test_zero.py 24.7 KB
Newer Older
chenzk's avatar
v1.0.8  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import os

import pytest
import torch
from helpers.distributed_tensor import assert_tensor_equal_over_group
from helpers.dummy import dummy_infinite_data_loader, init_dummy_model
from helpers.exception import assert_fail_with
from helpers.utils import available_gpus, init_distributed, rerun_if_address_is_in_use
from nanotron import distributed as dist
from nanotron.optim import NamedOptimizer, ZeroDistributedOptimizer
from nanotron.optim.zero import SlicedFlatTensor
from nanotron.parallel import ParallelContext
from nanotron.parallel.data_parallel.utils import sync_gradients_across_dp
from nanotron.parallel.parameters import NanotronParameter
from nanotron.parallel.pipeline_parallel.engine import AllForwardAllBackwardPipelineEngine
from nanotron.parallel.pipeline_parallel.tensor_pointer import TensorPointer
from nanotron.parallel.tensor_parallel import nn
from nanotron.parallel.tensor_parallel.enum import TensorParallelLinearMode
from nanotron.parallel.tied_parameters import sync_tied_weights_gradients
from nanotron.random import RandomStates, branch_random_state, get_current_random_state, get_synced_random_state
from torch import nn as torch_nn
from torch.nn.parallel import DistributedDataParallel


@pytest.mark.parametrize("tp,dp,pp", [pytest.param(1, i, 1) for i in range(1, min(4, available_gpus()) + 1)])
@rerun_if_address_is_in_use()
def test_zero_optimizer(tp: int, dp: int, pp: int):
    init_distributed(pp=pp, dp=dp, tp=tp)(_test_zero_optimizer)()


def _test_zero_optimizer(parallel_context: ParallelContext):
    model = init_dummy_model(parallel_context=parallel_context)
    optimizer = ZeroDistributedOptimizer(
        named_params_or_groups=model.named_parameters(),
        optimizer_builder=lambda named_param_groups: NamedOptimizer(
            named_params_or_groups=named_param_groups,
            optimizer_builder=lambda param_groups: torch.optim.AdamW(param_groups),
        ),
        dp_pg=parallel_context.dp_pg,
    )
    index_to_name = [name for name, _ in model.named_parameters()]

    # reference model
    reference_model = init_dummy_model(parallel_context=parallel_context)
    reference_optimizer = torch.optim.AdamW(reference_model.parameters())

    # sync weights between reference_model and model
    with torch.no_grad():
        for (name, param), (ref_name, ref_param) in zip(model.named_parameters(), reference_model.named_parameters()):
            assert name == ref_name
            param.copy_(ref_param)

    # Get infinite dummy data iterator
    data_loader = iter(dummy_infinite_data_loader(pp_pg=parallel_context.pp_pg))
    nb_optim_steps = 3
    batches = [[next(data_loader)] for _ in range(nb_optim_steps)]
    pipeline_engine = AllForwardAllBackwardPipelineEngine()

    # Training loop
    for i, batch in enumerate(batches):
        # store original reference parameter
        old_named_params = {name: param.detach().clone() for name, param in model.named_parameters()}

        # Run forward/backward
        losses = pipeline_engine.train_batch_iter(
            model=model, pg=parallel_context.pp_pg, batch=batch, nb_microbatches=1, grad_accumulator=None
        )
        ref_losses = pipeline_engine.train_batch_iter(
            model=reference_model, pg=parallel_context.pp_pg, batch=batch, nb_microbatches=1, grad_accumulator=None
        )

        # Check loss match
        losses = list(losses)
        ref_losses = list(ref_losses)
        assert len(losses) == len(ref_losses)
        for loss, ref_loss in zip(losses, ref_losses):
            assert isinstance(loss["loss"], torch.Tensor)
            assert isinstance(ref_loss["loss"], torch.Tensor)
            torch.testing.assert_close(
                loss["loss"], ref_loss["loss"], atol=0, rtol=0, msg=lambda msg: f"At iteration {i}, {msg}"
            )

        # Manually sync tied parameters' gradients
        sync_tied_weights_gradients(module=model, parallel_context=parallel_context, grad_accumulator=None)
        sync_tied_weights_gradients(module=reference_model, parallel_context=parallel_context, grad_accumulator=None)

        # We rely on DDP to synchronize gradients across DP. We only need to manually synchronize them if we don't use DDP.
        if not isinstance(model, DistributedDataParallel):
            sync_gradients_across_dp(
                model, dp_pg=parallel_context.dp_pg, reduce_op=dist.ReduceOp.AVG, grad_accumulator=None
            )
        if not isinstance(reference_model, DistributedDataParallel):
            sync_gradients_across_dp(
                reference_model, dp_pg=parallel_context.dp_pg, reduce_op=dist.ReduceOp.AVG, grad_accumulator=None
            )

        # Check gradients are synced across DP
        for name, param in model.named_parameters():
            assert_tensor_equal_over_group(param.grad, group=parallel_context.dp_pg)
        for ref_name, ref_param in reference_model.named_parameters():
            assert_tensor_equal_over_group(ref_param.grad, group=parallel_context.dp_pg)

        # Check gradients are the same with reference_model
        for (name, param), (ref_name, ref_param) in zip(model.named_parameters(), reference_model.named_parameters()):
            assert name == ref_name
            torch.testing.assert_close(
                param.grad, ref_param.grad, atol=0, rtol=0, msg=lambda msg: f"At iteration {i}, {msg}"
            )

        assert len(optimizer.param_groups) == 1
        assert len(list(model.named_parameters())) == len(optimizer.param_groups[0]["params"])
        with torch.no_grad():
            for (name, param), sliced_param in zip(model.named_parameters(), optimizer.param_groups[0]["params"]):
                offsets = optimizer.param_name_to_dp_rank_offsets[name][dist.get_rank(parallel_context.dp_pg)]

                # Check that weights are the same
                expected_slice = param.view(-1)[slice(*offsets)].view_as(sliced_param)
                torch.testing.assert_close(
                    expected_slice,
                    sliced_param,
                    atol=0,
                    rtol=0,
                    msg=lambda msg: f"Weights don't match: {msg}\n - Expected slice: {expected_slice}\n - Got: {sliced_param}\n - Full gradient: {param}",
                )
                assert (
                    expected_slice.data_ptr() == sliced_param.data_ptr()
                ), "Parameters should actually share the same data pointer"

                # Check gradients is the view
                expected_slice = param.grad.view(-1)[slice(*offsets)].view_as(sliced_param.grad)
                assert (
                    expected_slice.data_ptr() == sliced_param.grad.data_ptr()
                ), "Parameters should actually share the same data pointer"
                torch.testing.assert_close(
                    expected_slice,
                    sliced_param.grad,
                    atol=0,
                    rtol=0,
                    msg=lambda msg: f"Gradients don't match: {msg}\n - Expected slice: {expected_slice}\n - Got: {sliced_param.grad}\n - Full gradient: {param.grad}",
                )

        # Optimizer steps
        optimizer.step()
        optimizer.zero_grad()
        reference_optimizer.step()
        reference_optimizer.zero_grad()

        # Check that params are synced across DP
        for name, param in model.named_parameters():
            assert_tensor_equal_over_group(param, group=parallel_context.dp_pg)
            assert param.grad is None

        # Check that gradients are reset
        for ref_name, ref_param in reference_model.named_parameters():
            assert_tensor_equal_over_group(ref_param, group=parallel_context.dp_pg)
            assert ref_param.grad is None
        for param_group in optimizer.param_groups:
            for param in param_group["params"]:
                assert param.grad is None

        # Check params are the same with reference_model
        for (name, param), (ref_name, ref_param) in zip(model.named_parameters(), reference_model.named_parameters()):
            assert name == ref_name
            # TODO @thomasw21: Figure out how to make this pass at `atol`/`rtol` set to 0.
            torch.testing.assert_close(param, ref_param, msg=lambda msg: f"At iteration {i}, {msg}")

        # Check params have been updated correctly
        for (name, param) in model.named_parameters():
            old_param = old_named_params[name]
            assert not torch.allclose(param, old_param)

        # We need to check that the optimizer states are the same
        state_dict = optimizer.state_dict()
        reference_state_dict = reference_optimizer.state_dict()
        state = state_dict["state"]
        ref_state = reference_state_dict["state"]
        assert set(state) == set(ref_state)

        for index, optim_state in state.items():
            ref_optim_state = ref_state[index]

            name = index_to_name[index]
            offsets = optimizer.param_name_to_dp_rank_offsets[name][dist.get_rank(parallel_context.dp_pg)]

            assert set(optim_state) == set(ref_optim_state)

            for key in ["exp_avg", "exp_avg_sq"]:
                value = optim_state[key]
                ref_value = ref_optim_state[key]
                torch.testing.assert_close(
                    value,
                    ref_value.view(-1)[slice(*offsets)].view_as(value),
                    atol=0,
                    rtol=0,
                    msg=lambda msg: f"At iteration {i}, {msg}",
                )

    parallel_context.destroy()


@pytest.mark.parametrize("tp,dp,pp", [pytest.param(2, i, 1) for i in range(1, available_gpus() // 2 + 1)])
@pytest.mark.parametrize("tp_mode", list(TensorParallelLinearMode))
@pytest.mark.parametrize("async_communication", [False, True])
@rerun_if_address_is_in_use()
def test_zero_optimizer_with_tp(
    tp: int, dp: int, pp: int, tp_mode: TensorParallelLinearMode, async_communication: bool
):
    if tp_mode is TensorParallelLinearMode.ALL_REDUCE and async_communication:
        pytest.skip("ALL_REDUCE mode does not support async communication")
    init_distributed(pp=pp, dp=dp, tp=tp)(_test_zero_optimizer_with_tp)(
        tp_mode=tp_mode, async_communication=async_communication
    )


def _test_zero_optimizer_with_tp(
    parallel_context: ParallelContext, tp_mode: TensorParallelLinearMode, async_communication: bool
):
    if async_communication:
        os.environ["CUDA_DEVICE_MAX_CONNECTIONS"] = "1"

    model = torch_nn.Sequential(
        nn.TensorParallelColumnLinear(
            in_features=5,
            out_features=parallel_context.tp_pg.size(),
            mode=tp_mode,
            pg=parallel_context.tp_pg,
            device="cuda",
            async_communication=async_communication,
        ),
        # We choose `sigmoid` instead of `relu` since `relu` can result in a sparse gradient, causing no update to certain parameters
        torch_nn.Sigmoid(),
        nn.TensorParallelRowLinear(
            in_features=parallel_context.tp_pg.size(),
            out_features=3,
            mode=tp_mode,
            pg=parallel_context.tp_pg,
            device="cuda",
        ),
    )
    optimizer = ZeroDistributedOptimizer(
        named_params_or_groups=model.named_parameters(),
        optimizer_builder=lambda named_param_groups: NamedOptimizer(
            named_params_or_groups=named_param_groups,
            optimizer_builder=lambda param_groups: torch.optim.AdamW(param_groups),
        ),
        dp_pg=parallel_context.dp_pg,
    )
    optimizer_name_to_id = {v: k for k, v in optimizer.optimizer.id_to_name.items()}
    assert len(optimizer_name_to_id) == len(optimizer.id_to_name)

    # reference model
    reference_model = torch_nn.Sequential(
        torch_nn.Linear(in_features=5, out_features=parallel_context.tp_pg.size(), device="cuda"),
        torch_nn.Sigmoid(),
        torch_nn.Linear(in_features=parallel_context.tp_pg.size(), out_features=3, device="cuda"),
    )
    for module in reference_model.modules():
        for name, param in module.named_parameters(recurse=False):
            setattr(module, name, NanotronParameter(param))

    reference_optimizer = torch.optim.AdamW(reference_model.parameters())
    # TODO @thomasw21: This is a hack to obtain `AdamW` index in it's state.
    name_to_index = {name: index for index, (name, _) in enumerate(reference_model.named_parameters())}

    # sync parameters
    with torch.no_grad():
        for ref_name, ref_param in reference_model.named_parameters():
            dist.all_reduce(ref_param, op=dist.ReduceOp.AVG, group=parallel_context.world_pg)

        for (name, param), (ref_name, ref_param) in zip(model.named_parameters(), reference_model.named_parameters()):
            assert name == ref_name
            assert isinstance(param, NanotronParameter)

            if param.is_sharded:
                sharded_info = param.get_sharded_info()
                for local_global_slices_pair in sharded_info.local_global_slices_pairs:
                    local_slices = local_global_slices_pair.local_slices
                    global_slices = local_global_slices_pair.global_slices
                    param[local_slices].copy_(ref_param[global_slices])
            else:
                param.copy_(ref_param)

    # Get infinite dummy data iterator, it has to be synced across TP
    random_states = RandomStates(
        {
            "tp_synced": get_synced_random_state(random_state=get_current_random_state(), pg=parallel_context.tp_pg),
        }
    )
    batch_size = 2 * parallel_context.tp_pg.size() if tp_mode is TensorParallelLinearMode.REDUCE_SCATTER else 7
    with branch_random_state(random_states=random_states, key="tp_synced", enabled=True):
        nb_optim_steps = 3
        batches = [
            torch.randn(batch_size, 5, device="cuda")
            if dist.get_rank(parallel_context.pp_pg) == 0
            else TensorPointer(0)
            for _ in range(nb_optim_steps)
        ]

    # Model training loop
    for i, batch in enumerate(batches):
        # store original reference parameter
        old_named_params = {name: param.detach().clone() for name, param in model.named_parameters()}

        # Run forward pass
        if tp_mode is TensorParallelLinearMode.REDUCE_SCATTER:
            batch_size = batch.shape[0]
            assert batch_size % parallel_context.tp_pg.size() == 0
            step = batch_size // parallel_context.tp_pg.size()
            loss = model(
                batch[
                    dist.get_rank(parallel_context.tp_pg) * step : (dist.get_rank(parallel_context.tp_pg) + 1) * step
                ]
            )
        else:
            loss = model(batch)
        ref_loss = reference_model(batch)

        # Run backward pass
        loss.sum().backward()
        ref_loss.sum().backward()

        # Check loss is the same
        loss = loss.detach()
        ref_loss = ref_loss.detach()
        assert isinstance(loss, torch.Tensor)
        assert isinstance(ref_loss, torch.Tensor)
        if tp_mode is TensorParallelLinearMode.REDUCE_SCATTER:
            batch_size = batch.shape[0]
            assert batch_size % parallel_context.tp_pg.size() == 0
            step = batch_size // parallel_context.tp_pg.size()
            torch.testing.assert_close(
                loss,
                ref_loss[
                    dist.get_rank(parallel_context.tp_pg) * step : (dist.get_rank(parallel_context.tp_pg) + 1) * step
                ],
                msg=lambda msg: f"At iteration {i}, {msg}",
            )
        else:
            torch.testing.assert_close(loss, ref_loss, msg=lambda msg: f"At iteration {i}, {msg}")

        # Manually sync tied parameters
        sync_tied_weights_gradients(module=model, parallel_context=parallel_context, grad_accumulator=None)
        sync_tied_weights_gradients(module=reference_model, parallel_context=parallel_context, grad_accumulator=None)

        # We rely on DDP to synchronize gradients across DP. We only need to manually synchronize them if we don't use DDP.
        if not isinstance(model, DistributedDataParallel):
            sync_gradients_across_dp(
                model, dp_pg=parallel_context.dp_pg, reduce_op=dist.ReduceOp.AVG, grad_accumulator=None
            )
        if not isinstance(reference_model, DistributedDataParallel):
            sync_gradients_across_dp(
                reference_model, dp_pg=parallel_context.dp_pg, reduce_op=dist.ReduceOp.AVG, grad_accumulator=None
            )

        # Check gradients are synced across DP
        for name, param in model.named_parameters():
            assert_tensor_equal_over_group(param.grad, group=parallel_context.dp_pg)
        for ref_name, ref_param in reference_model.named_parameters():
            assert_tensor_equal_over_group(ref_param.grad, group=parallel_context.dp_pg)

        # Check gradients are the same with reference_model
        for (name, param), (ref_name, ref_param) in zip(model.named_parameters(), reference_model.named_parameters()):
            assert name == ref_name

            if param.is_sharded:
                sharded_info = param.get_sharded_info()
                for local_global_slices_pair in sharded_info.local_global_slices_pairs:
                    local_slices = local_global_slices_pair.local_slices
                    global_slices = local_global_slices_pair.global_slices
                    torch.testing.assert_close(
                        param.grad[local_slices],
                        ref_param.grad[global_slices],
                        msg=lambda msg: f"At iteration {i}, {msg}",
                    )
            else:
                torch.testing.assert_close(param.grad, ref_param.grad, msg=lambda msg: f"At iteration {i}, {msg}")

        with torch.no_grad():
            optim_param_id_to_param = {id(param): param for param in optimizer.param_groups[0]["params"]}
            assert len(optim_param_id_to_param) == len(optimizer.param_groups[0]["params"])
            for name, param in model.named_parameters():
                if dist.get_rank(parallel_context.dp_pg) not in optimizer.param_name_to_dp_rank_offsets[name]:
                    assert name not in optimizer_name_to_id
                    continue

                param_id = optimizer_name_to_id[name]
                sliced_param = optim_param_id_to_param[param_id]
                offsets = optimizer.param_name_to_dp_rank_offsets[name][dist.get_rank(parallel_context.dp_pg)]

                # Check that weights share the same storage
                expected_slice = param.view(-1)[slice(*offsets)].view_as(sliced_param)
                torch.testing.assert_close(
                    expected_slice,
                    sliced_param,
                    atol=0,
                    rtol=0,
                    msg=lambda msg: f"At iteration {i}, weights don't match: {msg}\n - Expected slice: {expected_slice}\n - Got: {sliced_param}\n - Full gradient: {param}",
                )
                assert (
                    expected_slice.data_ptr() == sliced_param.data_ptr()
                ), "Parameters should actually share the same data pointer"

                # Check that gradients share the same storage
                expected_slice = param.grad.view(-1)[slice(*offsets)].view_as(sliced_param.grad)
                assert (
                    expected_slice.data_ptr() == sliced_param.grad.data_ptr()
                ), "Parameters should actually share the same data pointer"
                torch.testing.assert_close(
                    expected_slice,
                    sliced_param.grad,
                    atol=0,
                    rtol=0,
                    msg=lambda msg: f"At iteration {i}, gradients don't match: {msg}\n - Expected slice: {expected_slice}\n - Got: {sliced_param.grad}\n - Full gradient: {param.grad}",
                )

        # Optimizer steps
        optimizer.step()
        optimizer.zero_grad()
        reference_optimizer.step()
        reference_optimizer.zero_grad()

        # Check that params are synced across DP
        for name, param in model.named_parameters():
            assert_tensor_equal_over_group(param, group=parallel_context.dp_pg)
            assert param.grad is None

        # Check that gradients are reset
        for ref_name, ref_param in reference_model.named_parameters():
            assert_tensor_equal_over_group(ref_param, group=parallel_context.dp_pg)
            assert ref_param.grad is None
        for param_group in optimizer.param_groups:
            for param in param_group["params"]:
                assert param.grad is None

        # Check params are the same with reference_model
        for (name, param), (ref_name, ref_param) in zip(model.named_parameters(), reference_model.named_parameters()):
            assert name == ref_name
            if param.is_sharded:
                sharded_info = param.get_sharded_info()
                for local_global_slices_pair in sharded_info.local_global_slices_pairs:
                    local_slices = local_global_slices_pair.local_slices
                    global_slices = local_global_slices_pair.global_slices
                    torch.testing.assert_close(
                        param[local_slices], ref_param[global_slices], msg=lambda msg: f"At iteration {i}, {msg}"
                    )
            else:
                torch.testing.assert_close(param, ref_param, msg=lambda msg: f"At iteration {i}, {msg}")

        # Check params have been updated correctly:
        for (name, param) in model.named_parameters():
            old_param = old_named_params[name]
            assert not torch.allclose(param, old_param)

        # We need to check that the optimizer states are the same
        state_dict = optimizer.state_dict()
        reference_state_dict = reference_optimizer.state_dict()
        state = state_dict["state"]
        ref_state = reference_state_dict["state"]

        assert "names" in state_dict
        state_index_to_name = state_dict["names"]
        state_name_to_index = {name: index for index, name in state_index_to_name.items()}
        # Check that this is a bijection
        assert len(state_index_to_name) == len(state_name_to_index)

        for name, param in model.named_parameters():
            if name not in state_name_to_index:
                # Parameters is not passed to optimizer, mainly due to zero sharding strategy
                continue

            index = state_name_to_index[name]
            optim_state = state[index]

            ref_optim_state = ref_state[name_to_index[name]]

            offsets = optimizer.param_name_to_dp_rank_offsets[name][dist.get_rank(parallel_context.dp_pg)]

            assert set(optim_state) == set(ref_optim_state)
            assert isinstance(param, NanotronParameter)
            for key in ["exp_avg", "exp_avg_sq"]:
                value = optim_state[key]
                ref_value = ref_optim_state[key]
                if param.is_sharded:
                    sharded_info = param.get_sharded_info()

                    for local_global_slices_pair in sharded_info.local_global_slices_pairs:
                        global_slices = local_global_slices_pair.global_slices
                        torch.testing.assert_close(
                            # TODO @thomasw21: We can't add any information about `local_slices` to `value` because it's already flattened
                            #  For now, we're going to assume that sharded parameters are contiguous, and `local_slices` are trivial all none slice
                            value,
                            ref_value[global_slices].view(-1)[slice(*offsets)],
                            msg=lambda msg: f"At iteration {i}, {msg}",
                        )
                else:
                    torch.testing.assert_close(
                        value,
                        ref_value.view(-1)[slice(*offsets)].view_as(value),
                        msg=lambda msg: f"At iteration {i}, {msg}",
                    )

    parallel_context.destroy()


@rerun_if_address_is_in_use()
def test_sliced_flat_tensor():
    init_distributed(1, 1, 1)(_test_sliced_flat_tensor)()


def _test_sliced_flat_tensor(parallel_context: ParallelContext):
    a = torch.randn(2, 3, requires_grad=True)
    grad = torch.randn(2, 3)
    a.grad = grad

    start_offset, end_offset = 1, 5
    b = SlicedFlatTensor(a, start_offset=start_offset, end_offset=end_offset)

    torch.testing.assert_close(a.grad, grad, atol=0, rtol=0)
    torch.testing.assert_close(b.grad, grad.view(-1)[start_offset:end_offset])

    # Deallocate the gradient by setting it to None
    a.grad = None

    assert a.grad is None
    assert b.grad is None

    # Setting gradient to None on the sliced tensor works
    a.grad = grad
    assert a.grad is not None
    assert b.grad is not None
    b.grad = None
    assert b.grad is None
    assert a.grad is None

    with assert_fail_with(NotImplementedError):
        b.grad = torch.randn(1, 5)

    with assert_fail_with(NotImplementedError):
        del b.grad

    c = b[:3]
    # It's important not to contaminate everyone.
    assert not isinstance(c, SlicedFlatTensor)

    parallel_context.destroy()