test_optimizer_params_groups.py 21.4 KB
Newer Older
chenzk's avatar
v1.0.8  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import pytest
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from helpers.utils import available_gpus, init_distributed, rerun_if_address_is_in_use
from nanotron.optim.gradient_accumulator import FP32GradientAccumulator
from nanotron.optim.named_optimizer import NamedOptimizer
from nanotron.optim.optimizer_from_gradient_accumulator import OptimizerFromGradientAccumulator
from nanotron.parallel.context import ParallelContext
from nanotron.parallel.parameters import NanotronParameter
from nanotron.random import set_random_seed


class DummyModel(nn.Module):
    def __init__(self, dtype=torch.float32):
        super(DummyModel, self).__init__()
        self.fc1 = nn.Linear(10, 20, bias=False).to(dtype=dtype)
        self.fc2 = nn.Linear(20, 2, bias=False).to(dtype=dtype)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        return x


def test_optimizer_lr_one_group():
    set_random_seed(42)

    model = DummyModel().to("cuda")

    lr1 = 0.1

    named_params_or_groups = []
    for name, param in model.named_parameters():
        named_params_or_groups.append((name, param))
    named_params_or_groups = [{"named_params": named_params_or_groups, "lr": lr1}]

    optimizer = NamedOptimizer(
        named_params_or_groups=named_params_or_groups,
        optimizer_builder=lambda param_groups: optim.SGD(
            param_groups,
            lr=9999999,  # this is a dummy value that should be overwritten by the lr in the named_params_or_groups
        ),
    )

    input = torch.randn(10, 10).to(device="cuda")
    target = torch.randint(0, 2, (10,)).to(device="cuda")

    for _ in range(100):
        optimizer.zero_grad()

        output = model(input)
        loss = F.cross_entropy(output, target)
        loss.backward()

        fc1_grad = model.fc1.weight.grad.clone()
        fc2_grad = model.fc2.weight.grad.clone()

        # compute gradient manually
        with torch.no_grad():
            expected_fc1_weight = model.fc1.weight - lr1 * fc1_grad
            expected_fc2_weight = model.fc2.weight - lr1 * fc2_grad

        optimizer.step()

        updated_fc1_weight = model.fc1.weight
        updated_fc2_weight = model.fc2.weight

        torch.testing.assert_close(expected_fc1_weight, updated_fc1_weight)
        torch.testing.assert_close(expected_fc2_weight, updated_fc2_weight)


def test_optimizer_lr_multiple_group():
    set_random_seed(42)

    model = DummyModel().to("cuda")

    lr1, lr2 = 0.1, 0.001

    named_params_or_groups = [
        {"named_params": [(name, param) for name, param in model.named_parameters() if "fc1" in name], "lr": lr1},
        {"named_params": [(name, param) for name, param in model.named_parameters() if "fc2" in name], "lr": lr2},
    ]

    optimizer = NamedOptimizer(
        named_params_or_groups=named_params_or_groups,
        optimizer_builder=lambda param_groups: optim.SGD(
            param_groups,
            lr=9999999,  # this is a dummy value that should be overwritten by the lr in the named_params_or_groups
        ),
    )

    input = torch.randn(10, 10).to(device="cuda")
    target = torch.randint(0, 2, (10,)).to(device="cuda")

    for _ in range(100):
        optimizer.zero_grad()

        output = model(input)
        loss = F.cross_entropy(output, target)
        loss.backward()

        fc1_grad = model.fc1.weight.grad.clone()
        fc2_grad = model.fc2.weight.grad.clone()

        with torch.no_grad():
            expected_fc1_weight = model.fc1.weight - lr1 * fc1_grad
            expected_fc2_weight = model.fc2.weight - lr2 * fc2_grad

        optimizer.step()

        updated_fc1_weight = model.fc1.weight
        updated_fc2_weight = model.fc2.weight

        torch.testing.assert_close(expected_fc1_weight, updated_fc1_weight)
        torch.testing.assert_close(expected_fc2_weight, updated_fc2_weight)


def test_optimizer_lr_weight_decay_one_group():
    set_random_seed(42)

    model = DummyModel().to("cuda")

    lr1 = 0.1
    weight_decay = 0.1

    named_params_or_groups = []
    for name, param in model.named_parameters():
        named_params_or_groups.append((name, param))
    named_params_or_groups = [{"named_params": named_params_or_groups, "lr": lr1, "weight_decay": weight_decay}]

    optimizer = NamedOptimizer(
        named_params_or_groups=named_params_or_groups,
        optimizer_builder=lambda param_groups: optim.SGD(
            param_groups,
            lr=9999999,  # this is a dummy value that should be overwritten by the lr in the named_params_or_groups
        ),
    )

    input = torch.randn(10, 10).to(device="cuda")
    target = torch.randint(0, 2, (10,)).to(device="cuda")

    for _ in range(100):
        optimizer.zero_grad()

        output = model(input)
        loss = F.cross_entropy(output, target)
        loss.backward()

        # Compute gradient manually and apply weight decay
        with torch.no_grad():
            expected_fc1_weight = (1 - lr1 * weight_decay) * model.fc1.weight - lr1 * model.fc1.weight.grad
            expected_fc2_weight = (1 - lr1 * weight_decay) * model.fc2.weight - lr1 * model.fc2.weight.grad

        optimizer.step()

        updated_fc1_weight = model.fc1.weight
        updated_fc2_weight = model.fc2.weight

        torch.testing.assert_close(expected_fc1_weight, updated_fc1_weight)
        torch.testing.assert_close(expected_fc2_weight, updated_fc2_weight)


def test_optimizer_lr_weight_decay_multiple_group():
    set_random_seed(42)

    model = DummyModel().to("cuda")

    lr1, lr2 = 0.1, 0.001
    weight_decay1, weight_decay2 = 0.1, 0.001

    named_params_or_groups = [
        {
            "named_params": [(name, param) for name, param in model.named_parameters() if "fc1" in name],
            "lr": lr1,
            "weight_decay": weight_decay1,
        },
        {
            "named_params": [(name, param) for name, param in model.named_parameters() if "fc2" in name],
            "lr": lr2,
            "weight_decay": weight_decay2,
        },
    ]

    optimizer = NamedOptimizer(
        named_params_or_groups=named_params_or_groups,
        optimizer_builder=lambda param_groups: optim.SGD(
            param_groups,
            lr=9999999,  # this is a dummy value that should be overwritten by the lr in the named_params_or_groups
        ),
    )

    input = torch.randn(10, 10).to(device="cuda")
    target = torch.randint(0, 2, (10,)).to(device="cuda")

    for _ in range(100):
        optimizer.zero_grad()

        output = model(input)
        loss = F.cross_entropy(output, target)
        loss.backward()

        # Compute gradient manually and apply weight decay
        with torch.no_grad():
            expected_fc1_weight = (1 - lr1 * weight_decay1) * model.fc1.weight - lr1 * model.fc1.weight.grad
            expected_fc2_weight = (1 - lr2 * weight_decay2) * model.fc2.weight - lr2 * model.fc2.weight.grad

        optimizer.step()

        updated_fc1_weight = model.fc1.weight
        updated_fc2_weight = model.fc2.weight

        torch.testing.assert_close(expected_fc1_weight, updated_fc1_weight)
        torch.testing.assert_close(expected_fc2_weight, updated_fc2_weight)


@pytest.mark.parametrize("half_precision", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("accumulation_steps", [1, 10])
def test_optimizer_grad_accumulation_lr_one_group(half_precision: torch.dtype, accumulation_steps: int):
    set_random_seed(42)
    dtype = half_precision
    lr1 = 0.1

    model = DummyModel(dtype=dtype).to("cuda")

    # Need to convert the weights to NanotronParameter for the gradient accumulation to work
    model.fc1.weight = NanotronParameter(model.fc1.weight)
    model.fc2.weight = NanotronParameter(model.fc2.weight)

    named_params_or_groups = []
    for name, param in model.named_parameters():
        named_params_or_groups.append((name, param))

    named_params_or_groups = [{"named_params": named_params_or_groups, "lr": lr1}]

    # Optimizer
    def optimizer_builder(inp_param_groups):
        return NamedOptimizer(
            named_params_or_groups=inp_param_groups,
            optimizer_builder=lambda param_groups: optim.SGD(
                param_groups,
                lr=9999999,  # this is a dummy value that should be overwritten by the lr in the named_params_or_groups
            ),
        )

    optimizer = OptimizerFromGradientAccumulator(
        gradient_accumulator_builder=lambda named_params: FP32GradientAccumulator(named_parameters=named_params),
        named_params_or_groups=named_params_or_groups,
        optimizer_builder=optimizer_builder,
    )

    accumulator = optimizer.gradient_accumulator

    input = torch.randn(10, 10, dtype=dtype).to(device="cuda")
    target = torch.randint(0, 2, (10,)).to(device="cuda")

    for batch_idx in range(100):
        optimizer.zero_grad()

        output = model(input)
        loss = F.cross_entropy(output.float(), target)
        accumulator.backward(loss)

        if (batch_idx + 1) % accumulation_steps == 0:

            # Manual update weights for ref
            with torch.no_grad():
                fc1_grad = accumulator.get_grad_buffer(name="fc1.weight").to(dtype)
                expected_fc1_weight = model.fc1.weight - lr1 * fc1_grad

                fc2_grad = accumulator.get_grad_buffer(name="fc2.weight").to(dtype)
                expected_fc2_weight = model.fc2.weight - lr1 * fc2_grad

            optimizer.step()

            updated_fc1_weight = model.fc1.weight
            updated_fc2_weight = model.fc2.weight

            torch.testing.assert_close(expected_fc1_weight, updated_fc1_weight)
            torch.testing.assert_close(expected_fc2_weight, updated_fc2_weight)


@pytest.mark.parametrize("half_precision", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("accumulation_steps", [1, 10])
def test_optimizer_grad_accumulation_lr_multiple_group(half_precision: torch.dtype, accumulation_steps: int):
    set_random_seed(42)
    dtype = half_precision
    lr1, lr2 = 0.1, 0.001

    model = DummyModel(dtype=dtype).to("cuda")

    # Need to convert the weights to NanotronParameter for the gradient accumulation to work
    model.fc1.weight = NanotronParameter(model.fc1.weight)
    model.fc2.weight = NanotronParameter(model.fc2.weight)

    named_params_or_groups = [
        {"named_params": [(name, param) for name, param in model.named_parameters() if "fc1" in name], "lr": lr1},
        {"named_params": [(name, param) for name, param in model.named_parameters() if "fc2" in name], "lr": lr2},
    ]

    # Optimizer
    def optimizer_builder(inp_param_groups):
        return NamedOptimizer(
            named_params_or_groups=inp_param_groups,
            optimizer_builder=lambda param_groups: optim.SGD(
                param_groups,
                lr=9999999,  # this is a dummy value that should be overwritten by the lr in the named_params_or_groups
            ),
        )

    optimizer = OptimizerFromGradientAccumulator(
        gradient_accumulator_builder=lambda named_params: FP32GradientAccumulator(named_parameters=named_params),
        named_params_or_groups=named_params_or_groups,
        optimizer_builder=optimizer_builder,
    )

    accumulator = optimizer.gradient_accumulator

    input = torch.randn(10, 10, dtype=dtype).to(device="cuda")
    target = torch.randint(0, 2, (10,)).to(device="cuda")

    for batch_idx in range(100):
        optimizer.zero_grad()

        output = model(input)
        loss = F.cross_entropy(output.float(), target)
        accumulator.backward(loss)

        if (batch_idx + 1) % accumulation_steps == 0:

            # Manual update weights for ref
            with torch.no_grad():
                fc1_grad = accumulator.get_grad_buffer(name="fc1.weight").to(dtype)
                expected_fc1_weight = model.fc1.weight - lr1 * fc1_grad

                fc2_grad = accumulator.get_grad_buffer(name="fc2.weight").to(dtype)
                expected_fc2_weight = model.fc2.weight - lr2 * fc2_grad

            optimizer.step()

            updated_fc1_weight = model.fc1.weight
            updated_fc2_weight = model.fc2.weight

            torch.testing.assert_close(expected_fc1_weight, updated_fc1_weight)
            torch.testing.assert_close(expected_fc2_weight, updated_fc2_weight)


@pytest.mark.parametrize("half_precision", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("accumulation_steps", [1, 10])
def test_optimizer_grad_accumulation_lr_weight_decay_one_group(half_precision: torch.dtype, accumulation_steps: int):
    set_random_seed(42)
    dtype = half_precision
    lr1 = 0.1
    weight_decay = 0.1

    model = DummyModel(dtype=dtype).to("cuda")

    # Need to convert the weights to NanotronParameter for the gradient accumulation to work
    model.fc1.weight = NanotronParameter(model.fc1.weight)
    model.fc2.weight = NanotronParameter(model.fc2.weight)

    named_params_or_groups = []
    for name, param in model.named_parameters():
        named_params_or_groups.append((name, param))
    named_params_or_groups = [{"named_params": named_params_or_groups, "lr": lr1, "weight_decay": weight_decay}]

    # Optimizer
    def optimizer_builder(inp_param_groups):
        return NamedOptimizer(
            named_params_or_groups=inp_param_groups,
            optimizer_builder=lambda param_groups: optim.SGD(
                param_groups,
                lr=9999999,  # this is a dummy value that will be overwritten by the lr in the named_params_or_groups
                weight_decay=9999999,  # this is a dummy value that will be overwritten by the weight_decay in the named_params_or_groups
            ),
        )

    optimizer = OptimizerFromGradientAccumulator(
        gradient_accumulator_builder=lambda named_params: FP32GradientAccumulator(named_parameters=named_params),
        named_params_or_groups=named_params_or_groups,
        optimizer_builder=optimizer_builder,
    )

    accumulator = optimizer.gradient_accumulator

    input = torch.randn(10, 10, dtype=dtype).to(device="cuda")
    target = torch.randint(0, 2, (10,)).to(device="cuda")

    for batch_idx in range(100):
        optimizer.zero_grad()

        output = model(input)
        loss = F.cross_entropy(output.float(), target)
        accumulator.backward(loss)

        if (batch_idx + 1) % accumulation_steps == 0:

            # Manual update weights for ref
            with torch.no_grad():
                fc1_grad = accumulator.get_grad_buffer(name="fc1.weight").to(dtype)
                expected_fc1_weight = (1 - lr1 * weight_decay) * model.fc1.weight - lr1 * fc1_grad

                fc2_grad = accumulator.get_grad_buffer(name="fc2.weight").to(dtype)
                expected_fc2_weight = (1 - lr1 * weight_decay) * model.fc2.weight - lr1 * fc2_grad

            optimizer.step()

            updated_fc1_weight = model.fc1.weight
            updated_fc2_weight = model.fc2.weight

            torch.testing.assert_close(expected_fc1_weight, updated_fc1_weight)
            torch.testing.assert_close(expected_fc2_weight, updated_fc2_weight)


@pytest.mark.parametrize("half_precision", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("accumulation_steps", [1, 10])
def test_optimizer_grad_accumulation_lr_weight_decay_multiple_group(
    half_precision: torch.dtype, accumulation_steps: int
):
    set_random_seed(42)
    dtype = half_precision
    lr1, lr2 = 0.1, 0.001
    weight_decay1, weight_decay2 = 0.1, 0.001

    model = DummyModel(dtype=dtype).to("cuda")

    # Need to convert the weights to NanotronParameter for the gradient accumulation to work
    model.fc1.weight = NanotronParameter(model.fc1.weight)
    model.fc2.weight = NanotronParameter(model.fc2.weight)

    named_params_or_groups = [
        {
            "named_params": [(name, param) for name, param in model.named_parameters() if "fc1" in name],
            "lr": lr1,
            "weight_decay": weight_decay1,
        },
        {
            "named_params": [(name, param) for name, param in model.named_parameters() if "fc2" in name],
            "lr": lr2,
            "weight_decay": weight_decay2,
        },
    ]
    # Optimizer
    def optimizer_builder(inp_param_groups):
        return NamedOptimizer(
            named_params_or_groups=inp_param_groups,
            optimizer_builder=lambda param_groups: optim.SGD(
                param_groups,
                lr=9999999,  # this is a dummy value that will be overwritten by the lr in the named_params_or_groups
                weight_decay=9999999,  # this is a dummy value that will be overwritten by the weight_decay in the named_params_or_groups
            ),
        )

    optimizer = OptimizerFromGradientAccumulator(
        gradient_accumulator_builder=lambda named_params: FP32GradientAccumulator(named_parameters=named_params),
        named_params_or_groups=named_params_or_groups,
        optimizer_builder=optimizer_builder,
    )

    accumulator = optimizer.gradient_accumulator

    input = torch.randn(10, 10, dtype=dtype).to(device="cuda")
    target = torch.randint(0, 2, (10,)).to(device="cuda")

    for batch_idx in range(100):
        optimizer.zero_grad()

        output = model(input)
        loss = F.cross_entropy(output.float(), target)
        accumulator.backward(loss)

        if (batch_idx + 1) % accumulation_steps == 0:

            # Manual update weights for ref
            with torch.no_grad():
                fc1_grad = accumulator.get_grad_buffer(name="fc1.weight").to(dtype)
                expected_fc1_weight = (1 - lr1 * weight_decay1) * model.fc1.weight - lr1 * fc1_grad

                fc2_grad = accumulator.get_grad_buffer(name="fc2.weight").to(dtype)
                expected_fc2_weight = (1 - lr2 * weight_decay2) * model.fc2.weight - lr2 * fc2_grad

            optimizer.step()

            updated_fc1_weight = model.fc1.weight
            updated_fc2_weight = model.fc2.weight

            torch.testing.assert_close(expected_fc1_weight, updated_fc1_weight)
            torch.testing.assert_close(expected_fc2_weight, updated_fc2_weight)


@pytest.mark.skipif(available_gpus() < 2, reason="Testing requires at least 2 gpus")
@pytest.mark.parametrize("half_precision", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("accumulation_steps", [1, 10])
@rerun_if_address_is_in_use()
def test_ddp_optimizer_grad_accumulation_lr_weight_decay_multiple_group(
    half_precision: torch.dtype, accumulation_steps: int
):
    init_distributed(tp=1, dp=2, pp=1)(_test_ddp_optimizer_grad_accumulation_lr_weight_decay_multiple_group)(
        half_precision=half_precision,
        accumulation_steps=accumulation_steps,
    )


def _test_ddp_optimizer_grad_accumulation_lr_weight_decay_multiple_group(
    parallel_context: ParallelContext, half_precision: torch.dtype, accumulation_steps: int
):
    set_random_seed(42)
    dtype = half_precision
    # Making it bigger so that the difference is more visible during update
    lr1, lr2 = 0.04, 0.05
    weight_decay1, weight_decay2 = 0.5, 0.2

    model = DummyModel(dtype=dtype).to("cuda")
    # Need to convert the weights to NanotronParameter for the gradient accumulation to work
    model.fc1.weight = NanotronParameter(model.fc1.weight)
    model.fc2.weight = NanotronParameter(model.fc2.weight)

    model_ddp = torch.nn.parallel.DistributedDataParallel(
        model,
        process_group=parallel_context.dp_pg,
    )

    named_params_or_groups = [
        {
            "named_params": [(name, param) for name, param in model_ddp.named_parameters() if "fc1" in name],
            "lr": lr1,
            "weight_decay": weight_decay1,
        },
        {
            "named_params": [(name, param) for name, param in model_ddp.named_parameters() if "fc2" in name],
            "lr": lr2,
            "weight_decay": weight_decay2,
        },
    ]
    # Optimizer
    def optimizer_builder(inp_param_groups):
        return NamedOptimizer(
            named_params_or_groups=inp_param_groups,
            optimizer_builder=lambda param_groups: optim.SGD(
                param_groups,
                lr=9999999,  # this is a dummy value that will be overwritten by the lr in the named_params_or_groups
                weight_decay=9999999,  # this is a dummy value that will be overwritten by the weight_decay in the named_params_or_groups
            ),
        )

    optimizer = OptimizerFromGradientAccumulator(
        gradient_accumulator_builder=lambda named_params: FP32GradientAccumulator(named_parameters=named_params),
        named_params_or_groups=named_params_or_groups,
        optimizer_builder=optimizer_builder,
    )

    accumulator = optimizer.gradient_accumulator

    input = torch.randn(10, 10, dtype=dtype).to(device="cuda")
    target = torch.randint(0, 2, (10,)).to(device="cuda")

    for batch_idx in range(100):
        optimizer.zero_grad()

        output = model(input)
        loss = F.cross_entropy(output.float(), target)
        accumulator.backward(loss)

        if (batch_idx + 1) % accumulation_steps == 0:

            # Manual update weights for ref
            with torch.no_grad():
                fc1_grad = accumulator.get_grad_buffer(name="module.fc1.weight").to(dtype)
                expected_fc1_weight = (1 - lr1 * weight_decay1) * model.fc1.weight - lr1 * fc1_grad

                fc2_grad = accumulator.get_grad_buffer(name="module.fc2.weight").to(dtype)
                expected_fc2_weight = (1 - lr2 * weight_decay2) * model.fc2.weight - lr2 * fc2_grad

            optimizer.step()

            updated_fc1_weight = model.fc1.weight
            updated_fc2_weight = model.fc2.weight

            torch.testing.assert_close(expected_fc1_weight, updated_fc1_weight)
            torch.testing.assert_close(expected_fc2_weight, updated_fc2_weight)