main.py 11.5 KB
Newer Older
chenzk's avatar
v1.0.8  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
from pathlib import Path
from typing import Optional, cast

import torch
from datasets.download.streaming_download_manager import xPath
from torch import nn
from torch.optim.lr_scheduler import LambdaLR

from nanotron import distributed as dist
from nanotron import logging
from nanotron import optim as optim
from nanotron.config import Config
from nanotron.distributed import get_global_rank
from nanotron.logging import log_rank
from nanotron.parallel import ParallelContext
from nanotron.parallel.parameters import NanotronParameter
from nanotron.s3_checkpoints import S3Mover, check_path_is_local, fs_open
from nanotron.sanity_checks import (
    assert_tensor_synced_across_pg,
    check_optim_state_in_sync,
)
from nanotron.serialize.metadata import TrainingMetadata, save_meta
from nanotron.serialize.optimizer import (
    save_lr_scheduler,
    save_optimizer,
)
from nanotron.serialize.weights import save_weights

"""
We're going to use safetensors. The reason is that loading segments is going to be much easier

Requirements:
 - serialized format need to be able to recover the current training state. (random states, weights, optimizer states_
 - serialized format should be topology agnostic. Will makes things much easier with varying topologies

Current way of thinking:
 - one file = one tensor (it would create huge amount of files, but we should revisit only if that's a problem)

Version 1:
 - serialize -> dumps every process weights in individual files
 - load -> assume topology is exactly the same.
"""


logger = logging.get_logger(__name__)


def save(
    config: "Config",
    model: nn.Module,
    optimizer: optim.BaseOptimizer,
    lr_scheduler: torch.optim.lr_scheduler.LRScheduler,
    parallel_context: ParallelContext,
    training_metadata: TrainingMetadata,
    root_folder: Path,
    should_save_config: bool = True,
    should_save_model: bool = True,
    should_save_optimizer: bool = True,
    should_save_lr_scheduler: bool = True,
    sanity_checks: bool = True,
) -> None:
    assert isinstance(training_metadata, TrainingMetadata)

    try:
        if should_save_config:
            config.save_as_yaml(root_folder / "config.yaml")
    except Exception as e:
        # TODO @nouamane: catch full disk error
        log_rank(
            f"Error while saving config: {e}",
            logger=logger,
            level=logging.ERROR,
            rank=0,
        )
        raise e
    try:
        if should_save_model:
            save_weights(model=model, parallel_context=parallel_context, root_folder=root_folder)
    except Exception as e:
        log_rank(
            f"Error while saving weights checkpoint: {e}",
            logger=logger,
            level=logging.ERROR,
            rank=0,
        )
        raise e
    try:
        if should_save_optimizer:
            save_optimizer(optimizer=optimizer, parallel_context=parallel_context, root_folder=root_folder)
    except Exception as e:
        log_rank(
            f"Error while saving optimizer checkpoint: {e}",
            logger=logger,
            level=logging.ERROR,
            rank=0,
        )
        raise e
    try:
        if should_save_lr_scheduler:
            lr_scheduler = cast(LambdaLR, lr_scheduler)
            assert len(lr_scheduler.lr_lambdas) == len(
                optimizer.param_groups
            ), "The number of lambdas functions in the scheduler should be equal to the number of parameter groups in the optimizer."

            save_lr_scheduler(
                lr_scheduler=lr_scheduler,
                is_zero=config.optimizer.zero_stage,
                parallel_context=parallel_context,
                root_folder=root_folder,
            )
    except Exception as e:
        log_rank(
            f"Error while saving lr_scheduler checkpoint: {e}",
            logger=logger,
            level=logging.ERROR,
            rank=0,
        )
        raise e

    save_meta(root_folder=root_folder, parallel_context=parallel_context, training_metadata=training_metadata)

    # TODO @thomas21: sanity check, not sure whether that needs to happen at testing or now (depends how much it costs)
    ###
    # SANITY CHECK: Check that the model params are synchronized across `parallel_context.dp_pg`
    if sanity_checks:
        for name, param_or_buffer in sorted(model.state_dict().items(), key=lambda x: x[0]):
            assert_tensor_synced_across_pg(
                tensor=param_or_buffer,
                pg=parallel_context.dp_pg,
                msg=lambda err: f"{name} are not synced across DP {err}",
            )

        # SANITY CHECK: Check that the tied parameters are synchronized
        sorted_tied_parameters = sorted(
            (
                param
                for parameters_group in optimizer.param_groups
                for param in parameters_group["params"]
                if param.requires_grad and isinstance(param, NanotronParameter) and param.is_tied
            ),
            key=lambda param: param.get_tied_info().name,
        )
        for tied_param in sorted_tied_parameters:
            tied_info = tied_param.get_tied_info()
            group_ranks = tied_info.global_ranks
            group = parallel_context.world_ranks_to_pg[group_ranks]

            assert_tensor_synced_across_pg(
                tensor=tied_param, pg=group, msg=lambda err: f"Tied {tied_info.name} are not synced {err}"
            )
        if not optimizer.inherit_from(optim.ZeroDistributedOptimizer):
            check_optim_state_in_sync(optimizer.state_dict(), parallel_context.dp_pg)

        # SANITY CHECK: tied parameters have their optimizer states synchronized
        # Compute a mapping from id_ to index in the optimizer sense
        state_dict = optimizer.state_dict()
        assert len(optimizer.param_groups) == len(state_dict["param_groups"])
        index_to_param = {}
        for real_param_group, index_param_group in zip(optimizer.param_groups, state_dict["param_groups"]):
            indices = index_param_group["params"]
            parameters = real_param_group["params"]
            assert len(indices) == len(parameters)
            for param, index in zip(parameters, indices):
                assert index not in index_to_param
                index_to_param[index] = param

        current_state_dict = optimizer.state_dict()
        for index, optim_state in sorted(current_state_dict["state"].items(), key=lambda x: x[0]):
            param = index_to_param[index]
            if not isinstance(param, NanotronParameter):
                continue
            if not param.is_tied:
                # If it's not shared, we don't need to check it's synced
                continue
            tied_info = param.get_tied_info()
            group_ranks = tied_info.global_ranks
            group = parallel_context.world_ranks_to_pg[group_ranks]
            reference_rank = 0
            current_rank = dist.get_rank(group)

            for name, tensor in optim_state.items():
                # FIXME @thomasw21: Some data is actually on `cpu`, just for this test we most it to `cuda`
                tensor = tensor.to("cuda")

                if current_rank == reference_rank:
                    reference_tensor = tensor
                else:
                    reference_tensor = torch.empty_like(tensor)
                dist.broadcast(
                    reference_tensor,
                    src=get_global_rank(group=group, group_rank=reference_rank),
                    group=group,
                )

                torch.testing.assert_close(
                    tensor,
                    reference_tensor,
                    atol=0,
                    rtol=0,
                    msg=lambda msg: f"tensor at {current_state_dict['names'][index]} doesn't match with our reference. Optimizer key: {name}\nCur: {tensor}\nRef: {reference_tensor}\n{msg}",
                )

    dist.barrier(parallel_context.world_pg)


def parse_ckpt_path(config: Config, parallel_context: ParallelContext) -> Optional[Path]:
    """Parse checkpoint path from config and download checkpoint from S3 if needed.

    Args:
        config: Config object.

    Returns:
        Path to checkpoint or None if no checkpoint.
    """
    load_from_candidate = config.checkpoints.resume_checkpoint_path
    if load_from_candidate is not None:
        if check_path_is_local(load_from_candidate):
            latest_meta_path: xPath = config.checkpoints.resume_checkpoint_path / "latest.txt"
            if latest_meta_path.exists():
                with fs_open(config.checkpoints.resume_checkpoint_path / "latest.txt", mode="r") as fi:
                    # TODO @thomasw21: make a better structure system so that we get typing correct
                    load_from_candidate = int(fi.read())
                checkpoint_path = config.checkpoints.resume_checkpoint_path / str(load_from_candidate)

            elif (config.checkpoints.resume_checkpoint_path / "model_config.json").exists():
                # we assume that the checkpoint path is a path to a checkpoint
                checkpoint_path = config.checkpoints.resume_checkpoint_path

            else:
                log_rank(
                    f"No previous checkpoint found in: {latest_meta_path}",
                    logger=logger,
                    level=logging.INFO,
                    rank=0,
                )
                return None

            log_rank(
                f"Loading checkpoint from {checkpoint_path}",
                logger=logger,
                level=logging.INFO,
                rank=0,
            )
        else:
            latest_meta_path = config.checkpoints.resume_checkpoint_path / "latest.txt"
            if latest_meta_path.exists():
                # if latest.txt exists, we assume that the checkpoint path is a path to a folder containing the checkpoint
                with fs_open(latest_meta_path, mode="r") as fi:
                    latest_iteration = int(fi.read())
                s3_path = config.checkpoints.resume_checkpoint_path / str(latest_iteration)  # load_path
                checkpoint_path = config.checkpoints.checkpoints_path / str(latest_iteration)  # save_path
            elif config.checkpoints.resume_checkpoint_path.exists():
                # we assume that the checkpoint path is a path to a checkpoint
                s3_path = config.checkpoints.resume_checkpoint_path  # load_path
                checkpoint_path = config.checkpoints.checkpoints_path / load_from_candidate.name  # save_path
            else:
                log_rank(
                    f"No previous checkpoint found in: {config.checkpoints.resume_checkpoint_path}\n Initializing from scratch.",
                    logger=logger,
                    level=logging.WARNING,
                    rank=0,
                )
                return None
            log_rank(
                f"Downloading checkpoint from S3 in {checkpoint_path} ",
                logger=logger,
                level=logging.WARNING,
                rank=0,
            )
            # Download checkpoint from S3
            s3_mover = S3Mover(
                local_path=os.path.join(checkpoint_path),
                s3_path=os.path.join(s3_path),
                s5cmd_numworkers=config.s3_upload.s5cmd_numworkers,
                s5cmd_concurrency=config.s3_upload.s5cmd_concurrency,
                s5cmd_path=config.s3_upload.s5cmd_path,
                dummy=bool(int(os.environ.get("LOCAL_RANK", None)) != 0),
            )
            s3_mover.distributed_wait_for_completion(parallel_context.world_pg)
            s3_mover.start_downloading()
            s3_mover.distributed_wait_for_completion(parallel_context.world_pg)

        return checkpoint_path