layer_norm.py 1.79 KB
Newer Older
chenzk's avatar
v1.0.8  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
from torch import nn


class TritonLayerNorm(nn.LayerNorm):
    def forward(
        self, input, residual=None, dropout_p=0.0, prenorm=False, residual_in_fp32=False, return_dropout_mask=False
    ):
        from flash_attn.ops.triton.layer_norm import layer_norm_fn

        return layer_norm_fn(
            input,
            self.weight,
            self.bias,
            residual=residual,
            eps=self.eps,
            dropout_p=dropout_p,
            prenorm=prenorm,
            residual_in_fp32=residual_in_fp32,
            is_rms_norm=False,
            return_dropout_mask=return_dropout_mask,
        )


# This is equivalent to LLaMA RMSNorm
# https://github.com/huggingface/transformers/blob/28952248b19db29ca25ccf34a5eec413376494a9/src/transformers/models/llama/modeling_llama.py#L112
class TritonRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.eps = eps
        self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
        self.register_parameter("bias", None)
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.ones_(self.weight)

    def forward(
        self, input, residual=None, dropout_p=0.0, prenorm=False, residual_in_fp32=False, return_dropout_mask=False
    ):
        from flash_attn.ops.triton.layer_norm import layer_norm_fn

        return layer_norm_fn(
            input,
            self.weight,
            None,
            residual=residual,
            eps=self.eps,
            dropout_p=dropout_p,
            prenorm=prenorm,
            residual_in_fp32=residual_in_fp32,
            is_rms_norm=True,
            return_dropout_mask=return_dropout_mask,
        )