logging.py 9.94 KB
Newer Older
chenzk's avatar
v1.0.8  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# coding=utf-8
# Copyright 2020 Optuna, Hugging Face
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Logging utilities. """
import logging
import os
import sys
from dataclasses import dataclass
from functools import lru_cache
from logging import (
    CRITICAL,
    DEBUG,
    ERROR,
    FATAL,
    INFO,
    NOTSET,
    WARNING,
    Formatter,
    Logger,
)
from typing import TYPE_CHECKING, List, Optional, Union

import torch
from torch import distributed as torch_dist

from nanotron import distributed as dist

if TYPE_CHECKING:
    from nanotron.config import LoggingArgs
from nanotron.parallel import ParallelContext

log_levels = {
    "debug": DEBUG,
    "info": INFO,
    "warning": WARNING,
    "error": ERROR,
    "critical": CRITICAL,
    "fatal": FATAL,
    "notset": NOTSET,
}


class NewLineStreamHandler(logging.StreamHandler):
    """
    We want to apply formatter before each new line
    https://stackoverflow.com/a/38458877
    """

    def emit(self, record):
        lines = record.msg.split("\n")
        for line in lines:
            record.msg = line
            super().emit(record)


DEFAULT_HANDLER = NewLineStreamHandler()
DEFAULT_LOG_LEVEL = logging.WARNING
LIBRARY_NAME = __name__.split(".")[0]


def _get_default_logging_level():
    """
    If NANOTRON_LOGGING_LEVEL env var is set to one of the valid choices return that as the new default level. If it is
    not - fall back to ``_default_log_level``
    """
    env_level_str = os.getenv("NANOTRON_LOGGING_LEVEL", None)
    if env_level_str:
        if env_level_str in log_levels:
            return log_levels[env_level_str]
        else:
            logging.getLogger().warning(
                f"Unknown option NANOTRON_LOGGING_LEVEL={env_level_str}, "
                f"has to be one of: { ', '.join(log_levels.keys()) }"
            )
    return DEFAULT_LOG_LEVEL


def get_library_root_logger() -> Logger:
    return get_logger(LIBRARY_NAME)


def _configure_library_root_logger() -> None:
    library_root_logger = get_library_root_logger()
    library_root_logger.addHandler(DEFAULT_HANDLER)
    library_root_logger.setLevel(_get_default_logging_level())


def _reset_library_root_logger() -> None:
    library_root_logger = get_library_root_logger()
    library_root_logger.setLevel(logging.NOTSET)


def get_logger(name: Optional[str] = None, log_level: Optional[str] = None) -> Logger:
    """
    Return a logger with the specified name.
    """
    logger_already_exists = isinstance(logging.root.manager.loggerDict.get(name, None), Logger)
    logger = logging.getLogger(name)

    if logger_already_exists or name is None:
        # if name is None we return root logger
        return logger

    # If the logger is in a `nanotron` module then we remove the capability to propagate
    if LIBRARY_NAME == name.split(".", 1)[0]:
        if log_level is not None:
            logger.setLevel(log_level.upper())
        elif LEVEL is not None:
            logger.setLevel(LEVEL)
        else:
            logger.setLevel(_get_default_logging_level())
        if HANDLER is not None:
            logger.handlers.clear()
            logger.addHandler(HANDLER)

        logger.propagate = False

    return logger


def get_verbosity() -> int:
    """
    Return the current level for the Nanotron root logger as an int.
    Returns:
        :obj:`int`: The logging level.
    .. note::
        Nanotron has following logging levels:
        - 50: ``nanotron.logging.CRITICAL`` or ``nanotron.logging.FATAL``
        - 40: ``nanotron.logging.ERROR``
        - 30: ``nanotron.logging.WARNING`` or ``nanotron.logging.WARN``
        - 20: ``nanotron.logging.INFO``
        - 10: ``nanotron.logging.DEBUG``
    """

    return get_library_root_logger().getEffectiveLevel()


LEVEL = None


def set_verbosity(verbosity: int) -> None:
    """
    Set the verbosity level for the all `nanotron` loggers.

    Args:
        verbosity (:obj:`int`):
            Logging level, e.g., one of:
            - ``nanotron.logging.CRITICAL`` or ``nanotron.logging.FATAL``
            - ``nanotron.logging.ERROR``
            - ``nanotron.logging.WARNING`` or ``nanotron.logging.WARN``
            - ``nanotron.logging.INFO``
            - ``nanotron.logging.DEBUG``
    """
    all_nanotron_loggers = {
        name: logger
        for name, logger in logging.root.manager.loggerDict.items()
        if isinstance(logger, Logger) and (name.startswith(f"{LIBRARY_NAME}.") or name == LIBRARY_NAME)
    }
    for name, logger in all_nanotron_loggers.items():
        logger.setLevel(verbosity)

        # We update all handles to be at the current verbosity as well.
        for handle in logger.handlers:
            handle.setLevel(verbosity)

    global LEVEL
    LEVEL = verbosity


HANDLER = None


def set_formatter(formatter: logging.Formatter) -> None:
    """
    Set a new custom formatter as the current handler.
    Note: it's important to first set level and then

    :param formatter:
    :return:
    """
    handler = NewLineStreamHandler(sys.stdout)
    handler.setFormatter(formatter)
    handler.setLevel(get_verbosity())
    handler.flush = sys.stderr.flush

    all_nanotron_loggers = {
        name: logger
        for name, logger in logging.root.manager.loggerDict.items()
        if isinstance(logger, Logger) and (name.startswith(f"{LIBRARY_NAME}.") or name == LIBRARY_NAME)
    }
    for name, logger in all_nanotron_loggers.items():
        # We keep only a single handler
        logger.handlers.clear()
        logger.addHandler(handler)

    global HANDLER
    HANDLER = handler


def log_rank(
    msg: str,
    logger: Logger,
    level: int,
    group: Optional[dist.ProcessGroup] = None,
    rank: Optional[int] = None,
    **kwargs,
):
    """Log only if the current process is the rank specified."""
    # Use default group is group is not provided
    if group is None:
        group = torch_dist.distributed_c10d._get_default_group()

    # rank is None means everyone logs
    if rank is None or dist.get_rank(group) == rank:
        logger.log(level, msg, **kwargs)


@lru_cache(maxsize=None)
def warn_once(
    msg: str, logger: Logger, group: Optional[dist.ProcessGroup] = None, rank: Optional[int] = None, **kwargs
):
    log_rank(msg=msg, logger=logger, level=logging.WARNING, group=group, rank=rank, **kwargs)


def human_format(num: float, billions: bool = False, divide_by_1024: bool = False) -> str:
    if abs(num) < 1:
        return "{:.3g}".format(num)
    SIZES = ["", "K", "M", "G", "T", "P", "E"]
    num = float("{:.3g}".format(num))
    magnitude = 0
    i = 0
    while abs(num) >= 1000 and i < len(SIZES) - 1:
        magnitude += 1
        num /= 1000.0 if not divide_by_1024 else 1024.0
        i += 1
    return "{}{}".format("{:f}".format(num).rstrip("0").rstrip("."), SIZES[magnitude])


def log_memory(logger: logging.Logger):
    log_rank(
        f" Memory usage: {torch.cuda.memory_allocated() / 1024**2:.2f}MiB."
        f" Peak allocated {torch.cuda.max_memory_allocated() / 1024**2:.2f}MiB."
        f" Peak reserved: {torch.cuda.max_memory_reserved() / 1024**2:.2f}MiB",
        logger=logger,
        level=logging.INFO,
        rank=0,
    )
    torch.cuda.reset_peak_memory_stats()


@dataclass
class LogItem:
    tag: str
    scalar_value: Union[float, int, str]
    log_format: Optional[str] = None


@dataclass
class LoggerWriter:
    global_step: int

    def add_scalar(self, tag: str, scalar_value: Union[float, int], log_format=None) -> str:
        if log_format == "human_format":
            log_str = f"{tag}: {human_format(scalar_value)}"
        else:
            log_str = f"{tag}: {scalar_value:{log_format}}" if log_format is not None else f"{tag}: {scalar_value}"
        return log_str

    def add_scalars_from_list(self, log_entries: List[LogItem], iteration_step: int):
        log_strs = [f"iteration: {iteration_step} / {self.global_step}"]
        log_strs += [
            self.add_scalar(log_item.tag, log_item.scalar_value, log_item.log_format) for log_item in log_entries
        ]
        log_str = " | ".join(log_strs)
        log_rank(log_str, logger=get_logger(__name__), level=logging.INFO)


def set_logger_verbosity_format(logging_level: str, parallel_context: ParallelContext):
    node_name = os.environ.get("SLURMD_NODENAME")
    expert_parallel_log = (
        f"|EXP={dist.get_rank(parallel_context.expert_pg)}" if parallel_context.expert_parallel_size > 1 else ""
    )
    formatter = Formatter(
        fmt=f"%(asctime)s [%(levelname)s|DP={dist.get_rank(parallel_context.dp_pg)}|PP={dist.get_rank(parallel_context.pp_pg)}|"
        f"TP={dist.get_rank(parallel_context.tp_pg)}{expert_parallel_log}{'|' + node_name if node_name else ''}]: %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
    )
    log_level = log_levels[logging_level]

    # main root logger
    root_logger = get_logger()
    root_logger.setLevel(log_level)
    handler = NewLineStreamHandler(sys.stdout)
    handler.setLevel(log_level)
    handler.setFormatter(formatter)
    root_logger.addHandler(handler)

    # Nanotron
    set_verbosity(log_level)
    set_formatter(formatter=formatter)


def set_ranks_logging_level(parallel_context: ParallelContext, logging_config: "LoggingArgs"):
    if dist.get_rank(parallel_context.world_pg) == 0:
        if logging_config.log_level is not None:
            set_logger_verbosity_format(logging_config.log_level, parallel_context=parallel_context)
    else:
        if logging_config.log_level_replica is not None:
            set_logger_verbosity_format(logging_config.log_level_replica, parallel_context=parallel_context)


_configure_library_root_logger()