moe.py 19.7 KB
Newer Older
chenzk's avatar
v1.0.8  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
""" LlaMa model with MoEs"""
import warnings
from functools import partial
from typing import Optional, Tuple

import numpy as np
import stk
import torch
import torch.nn.functional as F
from config_llamoe import LlaMoEConfig
from megablocks.layers import weight_parallel as wp
from megablocks.layers.activation_fn import act_fn
from nanotron import distributed as dist
from nanotron import logging
from nanotron.config import ParallelismArgs
from nanotron.parallel.context import ParallelContext
from nanotron.parallel.sharded_parameters import SplitConfig, mark_all_parameters_in_module_as_sharded
from nanotron.parallel.tensor_parallel.enum import TensorParallelLinearMode
from nanotron.parallel.tensor_parallel.nn import (
    TensorParallelColumnLinear,
    TensorParallelRowLinear,
)
from torch import nn

try:
    import megablocks.ops as ops
    from megablocks.layers.all_to_all import all_to_all
except ImportError:
    warnings.warn("Please install megablocks to use MoEs: `pip install megablocks`")


logger = logging.get_logger(__name__)


class dMoE(torch.nn.Module):
    def __init__(
        self,
        config: LlaMoEConfig,
        parallel_context: "ParallelContext",
        parallel_config: Optional[ParallelismArgs],
    ):
        super().__init__()
        self.config = config
        self.tp_mode = parallel_config.tp_mode if parallel_config is not None else TensorParallelLinearMode.ALL_REDUCE
        if self.tp_mode == TensorParallelLinearMode.REDUCE_SCATTER:
            logging.warn_once(
                logger=logger,
                msg="TensorParallelLinearMode.REDUCE_SCATTER is still experimental for MoEs. Use at your own risk.",
                rank=0,
            )

        # Token router.
        self.gate = LearnedRouter(config)

        # Expert computation helper.
        self.experts = ParallelDroplessMLP(
            config,
            use_bias=False,
            parallel_context=parallel_context,
            parallel_config=parallel_config,
        )

    def forward(self, x: torch.Tensor):
        """
        Args:
            x: input tensor of shape [sequence_length, batch_size, hidden_size]
        """
        # Compute the expert scores and assignments.
        # TODO: support sequence parallelism
        batch_size, sequence_length, _ = x.size()
        x = x.view(-1, self.config.hidden_size)
        scores, expert_weights, top_experts = self.gate(x)

        # Compute the experts.
        x = self.experts(x, scores, expert_weights, top_experts)
        return x.reshape(batch_size, sequence_length, -1)


# Adapted from megablocks.layers.router.LearnedRouter
class LearnedRouter(torch.nn.Module):
    def __init__(self, config: LlaMoEConfig):
        super().__init__()
        self.layer = torch.nn.Linear(config.hidden_size, config.moe_num_experts, bias=False)
        # TODO: initialization
        self.config = config

    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        router_logits = self.layer(x)  # (batch * sequence_length, n_experts)
        scores = F.softmax(router_logits, dim=-1, dtype=torch.float32)  # TODO: fuse?

        if self.config.num_experts_per_tok == 1:
            expert_weights, expert_indices = scores.max(dim=-1, keepdim=True)
        else:
            expert_weights, expert_indices = torch.topk(scores, self.config.num_experts_per_tok, dim=-1)

        return scores, expert_weights, expert_indices.int()


# Adapted from megablocks.layers.mlp.ParallelDroplessMLP
class ParallelDroplessMLP(torch.nn.Module):
    def __init__(
        self,
        config: LlaMoEConfig,
        use_bias: bool,
        parallel_context: "ParallelContext",
        parallel_config: Optional[ParallelismArgs],
    ):
        super().__init__()
        self.config = config
        self.use_bias = use_bias

        self.expert_pg_size = parallel_context.expert_pg.size()
        self.expert_parallel_group = parallel_context.expert_pg

        self.hidden_sharding_degree = self.expert_pg_size // min(self.expert_pg_size, self.config.moe_num_experts)
        self.experts_per_rank = self.config.moe_num_experts // min(self.expert_pg_size, self.config.moe_num_experts)

        self.num_experts = config.moe_num_experts
        self.num_experts_per_tok = self.config.num_experts_per_tok

        # Calculate the number of bits needed to represent the expert indices
        # so that we can pass it to radix sort.
        self.sort_end_bit = max(int(np.ceil(np.log2(self.num_experts))), 1)

        if use_bias:
            self.bias = torch.nn.Parameter(torch.empty(config.hidden_size))  # TODO: init

        # Select the forward function for the operating mode.
        self.forward_fn = self.parallel_forward_once if self.expert_pg_size > 1 else self.forward_once

        self.blocking = 128

        if self.experts_per_rank == 1:
            self.mlp = MLP(config=config, parallel_config=parallel_config, tp_pg=parallel_context.tp_pg)
        else:
            self.mlp = SparseMLP(config=config, parallel_config=parallel_config, parallel_context=parallel_context)

        max_column_index = (self.config.intermediate_size * self.num_experts) // self.blocking
        self.transpose_sort_end_bit = max(int(np.ceil(np.log2(max_column_index))), 1)

    def indices_and_bins(self, top_expert):
        # Sort the expert ids to produce the scatter/gather
        # indices for the permutation.
        top_expert = top_expert.int()
        bin_ids, indices = ops.sort(top_expert, self.sort_end_bit)
        tokens_per_expert = ops.histogram(top_expert, self.num_experts)

        # Calculate the bin bounds for the sorted tokens.
        bins = inclusive_cumsum(tokens_per_expert, 0)
        return indices, bin_ids, bins, tokens_per_expert

    def indices_and_padded_bins(self, top_experts):
        # Sort the expert ids to produce the scatter/gather
        # indices for the permutation.
        bin_ids, indices = ops.sort(top_experts, self.sort_end_bit)

        # Histogram the expert ids to identify the number of
        # tokens routed to each expert.
        tokens_per_expert = ops.histogram(top_experts, self.num_experts)

        # Round the token counts up to the block size used in
        # the matrix muliplications. Calculate the starting
        # position of each bin.
        padded_tokens_per_expert = ops.round_up(tokens_per_expert, self.blocking)
        padded_bins = inclusive_cumsum(padded_tokens_per_expert, 0)

        # Calculate the bin bounds for the sorted tokens.
        bins = inclusive_cumsum(tokens_per_expert, 0)
        return indices, bin_ids, bins, padded_bins, tokens_per_expert

    def forward_once(self, x, expert_weights, top_experts):  # TODO: sparse
        with torch.no_grad():
            (
                indices,
                bin_ids,
                bins,
                padded_bins,
                tokens_per_expert,
            ) = self.indices_and_padded_bins(top_experts)

        # Route the tokens for MoE computation.
        x = ops.padded_gather(x, indices, bin_ids, bins, padded_bins, self.num_experts_per_tok)

        with torch.no_grad():
            topo = self.topology(x, padded_bins)

        x = self.mlp(x, topo)

        # Un-route the data for the MoE output.
        x = ops.padded_scatter(
            x,
            indices,
            bin_ids,
            expert_weights,
            bins,
            padded_bins,
            self.num_experts_per_tok,
            -1,
        )
        return x, tokens_per_expert

    def parallel_forward_once(self, x, expert_weights, top_experts):
        with torch.no_grad():
            indices, bin_ids, bins, tokens_per_expert = self.indices_and_bins(top_experts)
            repeated_tokens_per_expert = ops.repeat(tokens_per_expert, (self.hidden_sharding_degree,))
            parallel_tokens_per_expert = torch.empty_like(repeated_tokens_per_expert)
            tpe_handle = torch.distributed.all_to_all_single(
                parallel_tokens_per_expert,
                repeated_tokens_per_expert,
                group=self.expert_parallel_group,
                async_op=True,
            )

        x = ops.gather(x, indices, bin_ids, bins, self.num_experts_per_tok)

        # Compute the number of tokens that will be received from each
        # device and permute the input data across the devices.
        with torch.no_grad():
            tpe_handle.wait()

            # Reshape to [expert_pg_size, num_experts_per_rank].
            repeated_tokens_per_expert = repeated_tokens_per_expert.view(self.expert_pg_size, self.experts_per_rank)
            parallel_tokens_per_expert = parallel_tokens_per_expert.view(self.expert_pg_size, self.experts_per_rank)

            send_counts = repeated_tokens_per_expert.cpu().sum(dim=-1)
            parallel_tokens_per_expert_cpu = parallel_tokens_per_expert.cpu()
            recv_counts = parallel_tokens_per_expert_cpu.sum(dim=-1)

            # Convert the send/recv counts to lists.
            send_counts = send_counts.tolist()
            recv_counts = recv_counts.tolist()
            tokens_received = sum(recv_counts)

        x = ops.repeat(x, (self.hidden_sharding_degree, 1))

        # Start the cross-device permutation asynchronously so we can
        # overlap communication with computation.
        parallel_x, parallel_x_handle = all_to_all(
            x, recv_counts, send_counts, self.expert_parallel_group, async_op=True
        )

        with torch.no_grad():
            replicate_bins = inclusive_cumsum(parallel_tokens_per_expert.flatten(), 0)

            # Construct the expert indices for the permuted tokens.
            parallel_top_expert = torch.remainder(
                torch.arange(
                    self.num_experts * self.hidden_sharding_degree,
                    dtype=torch.int32,
                    device=indices.device,
                ),
                self.experts_per_rank,
            )
            parallel_top_expert = ops.replicate(
                parallel_top_expert.unsqueeze(dim=0), replicate_bins, tokens_received
            ).flatten()

            parallel_bin_ids, parallel_indices = ops.sort(parallel_top_expert, self.sort_end_bit)

            # Calculate the bins boundaries from the token counts.
            parallel_tokens_per_expert = parallel_tokens_per_expert.sum(dim=0, dtype=torch.int)
            parallel_bins = inclusive_cumsum(parallel_tokens_per_expert, 0)

        # Locally permute the tokens and perform the expert computation.
        # Block to make sure that the cross-device permutation is complete.
        parallel_x_handle.wait()
        parallel_x = self.permute_and_compute(
            parallel_x,
            parallel_tokens_per_expert,
            parallel_indices,
            parallel_bin_ids,
            None,  # expert_weights
            parallel_bins,
            num_experts_per_tok=1,
        )

        # Un-permute the tokens across the devices.
        x, _ = all_to_all(parallel_x, send_counts, recv_counts, self.expert_parallel_group)

        # Reduce along the hidden sharding to get the final outputs.
        shape = (self.hidden_sharding_degree, -1, self.config.hidden_size)
        x = ops.sum(x.view(shape), dim=0)

        # Un-permute locally to setup for the next series of operations.
        x = ops.scatter(
            x,
            indices,
            bin_ids,
            expert_weights,
            bins,
            self.num_experts_per_tok,
        )
        return x, tokens_per_expert.flatten()

    def forward(self, x, scores, expert_weights, top_experts):
        """
        Args:
            x: input tensor of shape [sequence_length, batch_size, hidden_size]
            scores: tensor of shape [sequence_length * batch_size, n_experts]
            expert_weights: tensor of shape [sequence_length * batch_size, num_experts_per_tok]
            top_experts: tensor of shape [sequence_length * batch_size, num_experts_per_tok]
        """
        # Compute the experts.
        x, tokens_per_expert = self.forward_fn(x, expert_weights.flatten(), top_experts.flatten())

        if self.use_bias:
            return x + self.bias
        return x

    def permute_and_compute(
        self,
        x,
        tokens_per_expert,
        indices,
        bin_ids,
        expert_weights,
        bins,
        num_experts_per_tok,
    ):
        # Round the token counts up to the block size used in the matrix
        # multiplication. Calculate the starting position of each bin.
        padded_tokens_per_expert = ops.round_up(tokens_per_expert, self.blocking)
        padded_bins = inclusive_cumsum(padded_tokens_per_expert, 0)

        # Route the tokens for MoE computation.
        x = ops.padded_gather(x, indices, bin_ids, bins, padded_bins, num_experts_per_tok)

        # Perform the expert computation.
        with torch.no_grad():
            topo = self.topology(x, padded_bins)
        x = self.mlp(x, topo)

        # Un-route the data for the MoE output.
        return ops.padded_scatter(x, indices, bin_ids, expert_weights, bins, padded_bins, num_experts_per_tok)

    def sparse_transpose(self, size, row_indices, column_indices, offsets):
        block_columns = size[1] // self.blocking
        _, gather_indices = ops.sort(column_indices.int(), self.transpose_sort_end_bit)
        column_indices_t = row_indices.gather(0, gather_indices.long())
        block_offsets_t = gather_indices.int()

        zero = torch.zeros((1,), dtype=torch.int32, device=row_indices.device)
        nnz_per_column = ops.histogram(column_indices, block_columns)
        nnz_per_column = ops.inclusive_cumsum(nnz_per_column, 0)
        offsets_t = torch.cat([zero, nnz_per_column])
        return column_indices_t, offsets_t, block_offsets_t

    def topology(self, x, padded_bins):
        padded_tokens, _ = x.size()
        assert padded_tokens % self.blocking == 0
        assert self.config.intermediate_size % self.blocking == 0

        # Offsets for the sparse matrix. All rows have the
        # same number of nonzero blocks dictated by the
        # dimensionality of a single expert.
        block_rows = padded_tokens // self.blocking
        blocks_per_row = self.config.intermediate_size // self.blocking
        offsets = torch.arange(0, block_rows * blocks_per_row + 1, blocks_per_row, dtype=torch.int32, device=x.device)

        # Indices for the sparse matrix. The indices for
        # the intermediate matrix are dynamic depending
        # on the mapping of tokens to experts.
        column_indices = ops.topology(padded_bins, self.blocking, block_rows, blocks_per_row)

        # TODO(tgale): This is unused. Remove the need for this in stk.
        # For now, use meta init to save the device memory.
        data = torch.empty(column_indices.numel(), self.blocking, self.blocking, dtype=x.dtype, device="meta")
        shape = (padded_tokens, self.config.intermediate_size * self.experts_per_rank)
        row_indices = stk.ops.row_indices(shape, data, offsets, column_indices)
        column_indices_t, offsets_t, block_offsets_t = self.sparse_transpose(
            shape, row_indices, column_indices, offsets
        )
        return stk.Matrix(
            shape, data, row_indices, column_indices, offsets, column_indices_t, offsets_t, block_offsets_t
        )


class ScaleGradient(torch.autograd.Function):
    @staticmethod
    @torch.cuda.amp.custom_fwd
    def forward(ctx, x, scale):
        ctx.scale = scale
        return x

    @staticmethod
    @torch.cuda.amp.custom_bwd
    def backward(ctx, grad):
        return grad * ctx.scale, None


scale_gradient = ScaleGradient.apply


class ExpertParallel(nn.Module):
    """
    ExpertParallel serves to scale the gradients of the expert weights because unlike DP the gradients are not averaged across the expert parallel group.
    """

    def __init__(self, module, expert_parallel_size: int):
        super().__init__()
        self.module = module
        self.expert_parallel_size = expert_parallel_size

    def forward(self, *args, **kwargs):
        self.scale_gradients()
        return self.module(*args, **kwargs)

    def scale_gradients(self):
        scale_gradient(self.module, 1 / self.expert_parallel_size)


class SparseMLP(nn.Module):
    def __init__(
        self,
        config: LlaMoEConfig,
        parallel_config: Optional[ParallelismArgs],
        parallel_context: "ParallelContext",
    ):
        super().__init__()

        self.expert_pg_size = parallel_config.expert_parallel_size if parallel_config is not None else 1
        self.experts_per_rank = config.moe_num_experts // min(self.expert_pg_size, config.moe_num_experts)
        self.tp_pg = parallel_context.tp_pg

        self.w1 = ExpertParallel(
            nn.Linear(
                config.hidden_size, config.intermediate_size * self.experts_per_rank // self.tp_pg.size(), bias=False
            ),
            expert_parallel_size=self.expert_pg_size,
        )
        self.w2 = ExpertParallel(
            nn.Linear(
                config.hidden_size, config.intermediate_size * self.experts_per_rank // self.tp_pg.size(), bias=False
            ),
            expert_parallel_size=self.expert_pg_size,
        )

        mark_all_parameters_in_module_as_sharded(
            self,
            pg=parallel_context.tp_and_expert_pg,
            split_config=SplitConfig(split_dim=0),
        )

        if self.tp_pg.size() == 1:
            self.w1.module.weight.data = self.w1.module.weight.data.T.contiguous()

        # TODO @nouamane: jit
        self.act = partial(F.gelu, approximate="tanh")
        self.sdd = partial(wp.sdd_nt, group=self.tp_pg) if self.tp_pg.size() > 1 else stk.ops.sdd
        self.dsd = partial(wp.dsd_nn, group=self.tp_pg) if self.tp_pg.size() > 1 else stk.ops.dsd

    def forward(self, x, topo):
        self.w1.scale_gradients(), self.w2.scale_gradients()
        x = self.sdd(x.contiguous(), self.w1.module.weight, topo)
        activation_fn_out = act_fn(x, self.act)
        return self.dsd(activation_fn_out, self.w2.module.weight)


class MLP(nn.Module):
    def __init__(
        self,
        config: LlaMoEConfig,
        parallel_config: Optional[ParallelismArgs],
        tp_pg: dist.ProcessGroup,
    ):
        super().__init__()

        tp_mode = parallel_config.tp_mode if parallel_config is not None else TensorParallelLinearMode.ALL_REDUCE
        tp_linear_async_communication = (
            parallel_config.tp_linear_async_communication if parallel_config is not None else False
        )

        self.expert_pg_size = parallel_config.expert_parallel_size
        self.experts_per_rank = config.moe_num_experts // min(self.expert_pg_size, config.moe_num_experts)

        assert self.experts_per_rank == 1, "moe.MLP only supports 1 expert per rank, otherwise use moe.SparseMLP"

        self.w1 = ExpertParallel(
            TensorParallelColumnLinear(
                config.hidden_size,
                config.intermediate_size * self.experts_per_rank,
                pg=tp_pg,
                mode=tp_mode,
                bias=False,
                async_communication=tp_linear_async_communication,
            ),
            expert_parallel_size=self.expert_pg_size,
        )

        self.w2 = ExpertParallel(
            TensorParallelRowLinear(
                config.intermediate_size * self.experts_per_rank,
                config.hidden_size,
                pg=tp_pg,
                mode=tp_mode,
                bias=False,
                async_communication=tp_linear_async_communication
                and tp_mode is TensorParallelLinearMode.REDUCE_SCATTER,
            ),
            expert_parallel_size=self.expert_pg_size,
        )
        # TODO @nouamane: jit
        self.act = partial(F.gelu, approximate="tanh")

    def forward(self, hidden_states, topo):  # [seq_length, batch_size, hidden_dim]
        merged_states = self.w1(hidden_states)
        hidden_states = self.w2(self.act(merged_states))
        return hidden_states


def inclusive_cumsum(x, dim):
    scalar = ops.inclusive_cumsum(x, dim)
    return scalar.view(1) if not len(scalar.size()) else scalar