create_config_mamba.py 4.61 KB
Newer Older
chenzk's avatar
v1.0.8  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
""" Example python script to generate a YAML config file which can be used to run a training with nanotron. Refer to "examples" section in the `/README.md` for more information."""
import math
import os
import uuid

from config import MambaConfig, MambaInit, MambaModelConfig
from nanotron.config import (
    AdamWOptimizerArgs,
    CheckpointsArgs,
    DataArgs,
    DatasetStageArgs,
    GeneralArgs,
    LoggingArgs,
    LRSchedulerArgs,
    ModelArgs,
    OptimizerArgs,
    ParallelismArgs,
    PretrainDatasetsArgs,
    TokenizerArgs,
    TokensArgs,
)
from nanotron.logging import human_format

new_job_id = uuid.uuid4()
job_id = str(new_job_id)[:8]
seed = 42

ssm_cfg_dtype = "bfloat16"
ssm_cfg = {
    "d_state": 16,
    "d_conv": 4,
    "expand": 2,
    "dt_rank": "auto",
    "dt_min": 0.001,
    "dt_max": 0.1,
    "dt_init": "random",
    "dt_scale": 1.0,
    "dt_init_floor": 1e-4,
    "conv_bias": True,
    "bias": False,
    "use_fast_path": True,
}
# https://huggingface.co/state-spaces/mamba-790m/blob/main/config.json
model_config = MambaModelConfig(
    d_model=1024,
    num_hidden_layers=2,
    vocab_size=50278,
    ssm_cfg=ssm_cfg,
    rms_norm=True,
    fused_add_norm=True,
    residual_in_fp32=True,
    pad_vocab_size_multiple=8,
    # Custom
    dtype=ssm_cfg_dtype,
    rms_norm_eps=1e-5,
)

# NOTE: vocab_size is normally round up to the nearest multiple of 10. But here, we don't really care
tie_embedding = model_config.vocab_size * model_config.d_model  # model_config.vocab_size * model_config.d_model
expand = 2 if ("expand" not in ssm_cfg) else ssm_cfg["expand"]
ngroups = 1 if ("ngroups" not in ssm_cfg) else ssm_cfg["ngroups"]
d_state = 16 if ("d_state" not in ssm_cfg) else ssm_cfg["d_state"]
d_conv = 4 if ("d_conv" not in ssm_cfg) else ssm_cfg["d_conv"]
dt_rank = (
    math.ceil(model_config.d_model / 16)
    if ("dt_rank" not in ssm_cfg or ssm_cfg["dt_rank"] == "auto")
    else ssm_cfg["dt_rank"]
)

d_inner = int(expand * model_config.d_model)
in_proj = model_config.d_model * d_inner * 2

# conv1d.weight = out_channels * (in_channels // groups) * kernel_size
# conv1d.bias = out_channels
conv1d = d_inner * int(d_inner / d_inner) * d_conv + d_inner
# linear.weight = out_features * in_features
in_proj = model_config.d_model * d_inner * 2 + 0
x_proj = d_inner * (dt_rank + d_state * 2) + 0
out_proj = d_inner * model_config.d_model + 0
dt_proj = dt_rank * d_inner + d_inner
A_log = d_inner * d_state
D = d_inner
norm = model_config.d_model
norm_f = model_config.d_model

num_params = human_format(
    (
        tie_embedding
        + model_config.num_hidden_layers * (A_log + D + in_proj + conv1d + x_proj + dt_proj + out_proj + norm + norm_f)
    )
).replace(".", "p")

print(f"Model has {num_params} parameters")

seed = 42


optimizer = OptimizerArgs(
    zero_stage=0,
    weight_decay=0.01,
    clip_grad=1.0,
    accumulate_grad_in_fp32=True,  # NOTE(fmom): because we are using PP=TP=DP=1
    learning_rate_scheduler=LRSchedulerArgs(
        learning_rate=0.0015,
        lr_warmup_steps=30,
        lr_warmup_style="linear",
        lr_decay_style="cosine",
        min_decay_lr=0.00015,
    ),
    optimizer_factory=AdamWOptimizerArgs(
        adam_eps=1e-08,
        adam_beta1=0.9,
        adam_beta2=0.95,
        torch_adam_is_fused=True,
    ),
)


parallelism = ParallelismArgs(
    dp=2,
    pp=2,
    tp=2,
    pp_engine="1f1b",
    tp_mode="ALL_REDUCE",
    tp_linear_async_communication=False,
)

tokens = TokensArgs(sequence_length=2048, train_steps=300, micro_batch_size=8, batch_accumulation_per_replica=1)

data_stages = [
    DatasetStageArgs(
        name="Stable Training Stage",
        start_training_step=1,
        data=DataArgs(
            dataset=PretrainDatasetsArgs(hf_dataset_or_datasets="roneneldan/TinyStories", text_column_name="text"),
            seed=seed,
        ),
    )
]

model = ModelArgs(
    init_method=MambaInit(initializer_range=0.02, rescale_prenorm_residual=True, n_residuals_per_layer=1),
    model_config=model_config,
)

checkpoints_path = os.path.dirname(os.path.dirname(__file__)) + "/checkpoints"
os.makedirs(checkpoints_path, exist_ok=True)

config = MambaConfig(
    general=GeneralArgs(project="test", run="mamba", seed=seed, ignore_sanity_checks=True),
    checkpoints=CheckpointsArgs(checkpoints_path=checkpoints_path, checkpoint_interval=100),
    parallelism=parallelism,
    model=model,
    tokenizer=TokenizerArgs("gpt2"),
    optimizer=optimizer,
    logging=LoggingArgs(),
    tokens=tokens,
    data_stages=data_stages,
    profiler=None,
)

if __name__ == "__main__":
    dir = os.path.dirname(__file__)

    # Save config as YAML file
    config.save_as_yaml(f"{dir}/config_mamba.yaml")