run_train.py 8.63 KB
Newer Older
chenzk's avatar
v1.0.8  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
"""
Nanotron training script example using a custom dataloader.

Usage:
```
export CUDA_DEVICE_MAX_CONNECTIONS=1 # important for some distributed operations
torchrun --nproc_per_node=2 examples/custom-dataloader/run_train.py --config-file examples/custom-dataloader/config_custom_dl.yaml
```
"""
import argparse
from typing import Dict, cast

import datasets
import numpy as np
from nanotron import logging
from nanotron.config import (
    DataArgs,
    DatasetStageArgs,
    PretrainDatasetsArgs,
)
from nanotron.dataloader import (
    DataCollatorForCLM,
    clm_process,
    get_dataloader_worker_init,
    get_datasets,
    get_train_dataloader,
)
from nanotron.helpers import (
    compute_remain_train_steps_of_a_data_stage_from_ckp,
    get_consumed_train_samples_of_a_data_stage_from_ckp,
)
from nanotron.logging import log_rank
from nanotron.parallel.pipeline_parallel.utils import get_input_output_pp_ranks
from nanotron.trainer import DistributedTrainer
from nanotron.utils import main_rank_first
from torch.utils.data import DataLoader

try:
    from huggingface_hub import __version__ as hf_hub_version
    from transformers import AutoTokenizer
    from transformers import __version__ as tf_version
except ImportError:
    hf_hub_version = None
    tf_version = None

logger = logging.get_logger(__name__)


def get_dataloader_from_data_stage(
    trainer: DistributedTrainer,
    data: DataArgs,
    consumed_train_samples: int,
    num_remaining_train_steps: int,
):
    """
    Returns a dataloader for a given data stage.

    data: The data configuration for the current stage.
    consumed_train_samples: The number of samples consumed by the model in the this stage (each stage starts from zero).
    num_remaining_train_steps: The number of remaining training steps for this stage.
    """
    assert consumed_train_samples >= 0, "consumed_train_samples should be greater than 0"
    assert num_remaining_train_steps >= 0, "num_remaining_train_steps should be greater than 0"

    # First, we need to know which ranks to feed the dataloader to
    input_pp_rank, output_pp_rank = get_input_output_pp_ranks(model=trainer.model)

    # Case 1: custom data generator
    if data.dataset is None:
        log_rank("Using custom data generator", logger=logger, level=logging.INFO, rank=0)

        ###########################################################################################################
        # This can be replaced with your own tokenized data generator
        ###########################################################################################################
        train_dataset = datasets.Dataset.from_dict(
            {
                "input_ids": np.random.randint(
                    0,
                    trainer.config.model.model_config.vocab_size,
                    (trainer.global_batch_size * num_remaining_train_steps, trainer.sequence_length + 1),
                ),
            }
        )
        ###########################################################################################################

        data_collator = DataCollatorForCLM(
            sequence_length=trainer.sequence_length,
            input_pp_rank=input_pp_rank,
            output_pp_rank=output_pp_rank,
            parallel_context=trainer.parallel_context,
        )

        return DataLoader(
            train_dataset,
            batch_size=trainer.micro_batch_size,
            collate_fn=data_collator,
            drop_last=True,
            num_workers=0,
            pin_memory=True,
            worker_init_fn=get_dataloader_worker_init(dp_rank=trainer.parallel_context.dp_pg.rank()),
        )

    # Case 2: HuggingFace datasets
    elif isinstance(data.dataset, PretrainDatasetsArgs):
        log_rank("Using `datasets` library", logger=logger, level=logging.INFO, rank=0)
        tokenizer_path = trainer.config.tokenizer.tokenizer_name_or_path
        log_rank(
            f"Loading tokenizer from {tokenizer_path} and transformers/hf_hub versions {tf_version, hf_hub_version}",
            logger=logger,
            level=logging.INFO,
            rank=0,
        )

        # We need to the 1st device to process dataset and cache it, then other devices load from cache
        with main_rank_first(trainer.parallel_context.world_pg):
            # We load the raw dataset
            raw_dataset = get_datasets(
                hf_dataset_or_datasets=data.dataset.hf_dataset_or_datasets,
                hf_dataset_config_name=data.dataset.hf_dataset_config_name,
                splits=data.dataset.hf_dataset_splits,
            )["train"]

            tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
            tokenizer.pad_token = tokenizer.eos_token
            tokenizer.padding_side = "left"

            # We apply the Causal Language Modeling preprocessing
            train_dataset = clm_process(
                raw_dataset=raw_dataset,
                tokenizer=tokenizer,
                text_column_name=data.dataset.text_column_name,
                dataset_processing_num_proc_per_process=data.dataset.dataset_processing_num_proc_per_process,
                dataset_overwrite_cache=data.dataset.dataset_overwrite_cache,
                sequence_length=trainer.sequence_length,
            )

            # We load the processed dataset on the ranks requiring it
            dataloader = get_train_dataloader(
                train_dataset=train_dataset,
                sequence_length=trainer.sequence_length,
                parallel_context=trainer.parallel_context,
                input_pp_rank=input_pp_rank,
                output_pp_rank=output_pp_rank,
                micro_batch_size=trainer.micro_batch_size,
                consumed_train_samples=consumed_train_samples,
                dataloader_num_workers=data.num_loading_workers,
                seed_worker=data.seed,
                dataloader_drop_last=True,
            )

            # Check if we have enough samples for train_steps
            total_tokens_dataset = len(dataloader.dataset) * trainer.sequence_length
            num_tokens_needed_for_training = (
                num_remaining_train_steps * trainer.global_batch_size * trainer.sequence_length
            )
            assert num_tokens_needed_for_training <= total_tokens_dataset, (
                f"Dataset is too small for steps ({total_tokens_dataset} < {num_tokens_needed_for_training}), "
                f"Try train_steps<={len(dataloader.dataset) // trainer.global_batch_size + trainer.iteration_step}"
            )
    else:
        raise ValueError(f"Unhandled case of `self.config.data.dataset`. Got: {data.dataset}")

    return dataloader


def get_dataloader(trainer: DistributedTrainer) -> Dict[str, DataLoader]:
    dataloaders = {}

    for stage_idx, stage in enumerate(trainer.config.data_stages):
        # NOTE: we only create the dataloader for the first stage,
        # then we lazy initialize the dataloader for the other stages
        stage = cast(DatasetStageArgs, stage)
        consumed_train_samples = get_consumed_train_samples_of_a_data_stage_from_ckp(stage, trainer.metadata)
        assert (
            consumed_train_samples is not None
        ), f"Cannot find consumed_train_samples for stage {stage.start_training_step} in the checkpoint"

        num_remaining_train_steps = compute_remain_train_steps_of_a_data_stage_from_ckp(
            stage, trainer.config, trainer.metadata
        )
        log_rank(
            f"[Training Plan] Stage {stage.name} has {num_remaining_train_steps} remaining training steps and has consumed {consumed_train_samples} samples",
            logger=logger,
            level=logging.INFO,
            rank=0,
        )

        dataloader = (
            get_dataloader_from_data_stage(
                trainer,
                stage.data,
                consumed_train_samples=consumed_train_samples,
                num_remaining_train_steps=num_remaining_train_steps,
            )
            if stage_idx == 0
            else lambda stage=stage: get_dataloader_from_data_stage(
                trainer,
                stage.data,
                consumed_train_samples=consumed_train_samples,
                num_remaining_train_steps=num_remaining_train_steps,
            )
        )
        dataloaders[stage.name] = dataloader
    return dataloaders


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config-file", type=str, required=True, help="Path to the YAML or python config file")
    return parser.parse_args()


if __name__ == "__main__":
    args = get_args()
    config_file = args.config_file

    # Load trainer and data
    trainer = DistributedTrainer(config_file)
    dataloader = get_dataloader(trainer)

    # Train
    trainer.train(dataloader)