README_origin.md 4.3 KB
Newer Older
chenzk's avatar
v1.0.8  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
<h1 align="center">⚡️ Nanotron</h1>

<p align="center">
    <a href="https://github.com/huggingface/nanotron/releases">
        <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/nanotron.svg">
    </a>
    <a href="https://github.com/huggingface/nanotron/blob/master/LICENSE">
        <img alt="License" src="https://img.shields.io/github/license/huggingface/nanotron.svg?color=green">
    </a>
</p>

<h4 align="center">
    <p>
        <a href="#installation">Installation</a>
        <a href="#quick-start">Quick Start</a>
        <a href="#features">Features</a>
        <a href="CONTRIBUTING.md">Contributing</a>
    <p>
</h4>

<h3 align="center">
    <a href="https://huggingface.co/nanotron"><img style="float: middle; padding: 10px 10px 10px 10px;" width="60" height="55" src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png" /></a>
</h3>
<h3 align="center">
<p>Pretraining models made easy
</h3>


Nanotron is a library for pretraining transformer models. It provides a simple and flexible API to pretrain models on custom datasets. Nanotron is designed to be easy to use, fast, and scalable. It is built with the following principles in mind:

- **Simplicity**: Nanotron is designed to be easy to use. It provides a simple and flexible API to pretrain models on custom datasets.
- **Performance**: Optimized for speed and scalability, Nanotron uses the latest techniques to train models faster and more efficiently.

## Installation

```bash
# Requirements: Python>=3.10
git clone https://github.com/huggingface/nanotron
cd nanotron
pip install --upgrade pip
pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu121
pip install -e .

# Install dependencies if you want to use the example scripts
pip install datasets transformers
pip install triton "flash-attn>=2.5.0" --no-build-isolation
```
> [!NOTE]
> If you get `undefined symbol: ncclCommRegister` error you should install torch 2.1.2 instead: `pip install torch==2.1.2 --index-url https://download.pytorch.org/whl/cu121`

> [!TIP]
> We log to wandb automatically if it's installed. For that you can use `pip install wandb`. If you don't want to use wandb, you can run `wandb disabled`.

## Quick Start
### Training a tiny Llama model
The following command will train a tiny Llama model on a single node with 8 GPUs. The model will be saved in the `checkpoints` directory as specified in the config file.
```bash
CUDA_DEVICE_MAX_CONNECTIONS=1 torchrun --nproc_per_node=8 run_train.py --config-file examples/config_tiny_llama.yaml
```

### Run generation from your checkpoint
```bash
torchrun --nproc_per_node=1 run_generate.py --ckpt-path checkpoints/10/ --tp 1 --pp 1
# We could set a larger TP for faster generation, and a larger PP in case of very large models.
```

### Custom examples
You can find more examples in the [`/examples`](/examples) directory:
<!-- Make a table of the examples we support -->
| Example | Description |
| --- | --- |
| `custom-dataloader` | Plug a custom dataloader to nanotron |
| `datatrove` | Use the datatrove library to load data |
| `doremi` | Use DoReMi to speed up training |
| `mamba` | Train an example Mamba model |
| `moe` | Train an example Mixture-of-Experts (MoE) model |
| `mup` | Use spectral µTransfer to scale up your model |
| `examples/config_tiny_llama_with_s3_upload.yaml` | For automatically uploading checkpoints to S3 |

We're working on adding more examples soon! Feel free to add a PR to add your own example. 🚀


## Features
We currently support the following features:
- [x] 3D parallelism (DP+TP+PP)
- [x] Expert parallelism for MoEs
- [x] AFAB and 1F1B schedules for PP
- [x] Explicit APIs for TP and PP which enables easy debugging
- [x] ZeRO-1 optimizer
- [x] FP32 gradient accumulation
- [x] Parameter tying/sharding
- [x] Custom module checkpointing for large models
- [x] Spectral µTransfer parametrization for scaling up neural networks
- [x] Mamba example

And we have on our roadmap:
- [ ] FP8 training
- [ ] ZeRO-3 optimizer (a.k.a FSDP)
- [ ] `torch.compile` support
- [ ] Ring attention
- [ ] Interleaved 1f1b schedule

## Credits
We would like to thank everyone working on LLMs, especially those sharing their work openly from which we took great inspiration: Nvidia for `Megatron-LM/apex`, Microsoft for `DeepSpeed`, HazyResearch for `flash-attn`..