* ImageNet: Please move validation images to labeled subfolders, you can use the script [here](https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh).
 The pretrained model with top-1 accuracy 67.52% is provided in the folder [pretrained](https://github.com/ShowLo/MobileNetV3/tree/master/pretrained).
 This project uses Python 3.7 and PyTorch 1.1.0. The FLOPs and Parameters and measured using [torchsummaryX](https://github.com/nmhkahn/torchsummaryX).
 You can find the paper of MobileNetV3 at [Searching for MobileNetV3](https://arxiv.org/abs/1905.02244).
# Prepare data
* CIFAR-10
* CIFAR-100
* SVHN
* Tiny-ImageNet
* ImageNet: Please move validation images to labeled subfolders, you can use the script [here](https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh).
 The pretrained model with top-1 accuracy 67.52% is provided in the folder [pretrained](https://github.com/ShowLo/MobileNetV3/tree/master/pretrained).
 This project uses Python 3.7 and PyTorch 1.1.0. The FLOPs and Parameters and measured using [torchsummaryX](https://github.com/nmhkahn/torchsummaryX).