train.py 20.8 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# -*- coding: UTF-8 -*-

'''
Train the model
Ref: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
'''

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import time
import datetime
import os
from mobileNetV3 import MobileNetV3
import argparse
import copy
from math import cos, pi

from statistics import *
from EMA import EMA
from LabelSmoothing import LabelSmoothingLoss
# from DataLoader import dataloaders
from ResultWriter import ResultWriter
from CosineLR import *
from Mixup import mixup_data, mixup_criterion
from collections import OrderedDict

import torch.distributed as dist

def train(args, model, dataloader, loader_len, criterion, optimizer, scheduler, use_gpu, epoch, ema=None, save_file_name='train.csv'):
    '''
    train the model
    '''
    # save result every epoch
    resultWriter = ResultWriter(args.save_path, save_file_name)
    if epoch == 0:
        resultWriter.create_csv(['epoch', 'loss', 'top-1', 'top-5', 'lr'])

    # use gpu or not
    device = torch.device('cuda' if use_gpu else 'cpu')

    # statistical information
    batch_time = AverageMeter('Time', ':6.3f')
    sample_time=AverageMeter('samples/sec', ':6.2f')
    data_time = AverageMeter('Data', ':6.3f')
    losses = AverageMeter('Loss', ':.4e')
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    progress = ProgressMeter(
        loader_len,
        [batch_time, data_time,sample_time, losses, top1, top5],
        prefix="{}  Epoch: [{}]  rank {}  ".format(datetime.datetime.fromtimestamp(time.time()),epoch,local_rank))
    
    # update lr here if using stepLR
    if args.lr_decay == 'step':
        scheduler.step(epoch)
    
    # Set model to training mode
    model.train()

    end = time.time()

    # Iterate over data
    for i, (inputs, labels) in enumerate(dataloader):
        # measure data loading time
        data_time.update(time.time() - end)

        inputs = inputs.to(device)
        labels = labels.to(device)

        if args.mixup:
            # using mixup
            inputs, labels_a, labels_b, lam = mixup_data(inputs, labels, args.mixup_alpha)
            outputs = model(inputs)
            loss = mixup_criterion(criterion, outputs, labels_a, labels_b, lam)
            acc1_a, acc5_a = accuracy(outputs, labels_a, topk=(1, 5))
            acc1_b, acc5_b = accuracy(outputs, labels_b, topk=(1, 5))
            # measure accuracy and record loss
            acc1 = lam * acc1_a + (1 - lam) * acc1_b
            acc5 = lam * acc5_a + (1 - lam) * acc5_b
        else:
            # normal forward
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            # measure accuracy and record loss
            acc1, acc5 = accuracy(outputs, labels, topk=(1, 5))
        
        # zero the parameter gradients
        optimizer.zero_grad()

        losses.update(loss.item(), inputs.size(0))
        top1.update(acc1[0], inputs.size(0))
        top5.update(acc5[0], inputs.size(0))
            
        # backward + optimize
        loss.backward()
        if args.lr_decay == 'cos':
            # update lr here if using cosine lr decay
            scheduler.step(epoch * loader_len + i)
        elif args.lr_decay == 'sgdr':
            # update lr here if using sgdr
            scheduler.step(epoch + i / loader_len)
        optimizer.step()
        if args.ema_decay > 0:
            # EMA update after training(every iteration)
            ema.update()
                
        batch_time.update(time.time() - end)
        sample_time.update(args.batch_size/batch_time.avg)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i)
            
    # write training result to file
    resultWriter.write_csv([epoch, losses.avg, top1.avg.item(), top5.avg.item(), scheduler.optimizer.param_groups[0]['lr']])
    
    print()
    # there is a bug in get_lr() if using pytorch 1.1.0, see https://github.com/pytorch/pytorch/issues/22107
    # so here we don't use get_lr()
    # print('lr:%.6f' % scheduler.get_lr()[0])
    print('lr:%.6f' % scheduler.optimizer.param_groups[0]['lr'])
    print('{}  Train ***  rank:{}   Loss:{losses.avg:.2e}    Acc@1:{top1.avg:.2f}    Acc@5:{top5.avg:.2f}'.format(datetime.datetime.fromtimestamp(time.time()),local_rank,losses=losses, top1=top1, top5=top5))

    if epoch % args.save_epoch_freq == 0 and epoch != 0 and local_rank==0:
        if not os.path.exists(args.save_path):
            os.makedirs(args.save_path)
        torch.save(model.state_dict(), os.path.join(args.save_path, "epoch_" + str(epoch) + ".pth"))
    return sample_time.avg

def validate(args, model, dataloader, loader_len, criterion, use_gpu, epoch, ema=None, save_file_name='val.csv'):
    '''
    validate the model
    '''

    # save result every epoch
    resultWriter = ResultWriter(args.save_path, save_file_name)
    if epoch == 0:
        resultWriter.create_csv(['epoch', 'loss', 'top-1', 'top-5'])

    device = torch.device('cuda' if use_gpu else 'cpu')

    batch_time = AverageMeter('Time', ':6.3f')
    data_time = AverageMeter('Data', ':6.3f')
    losses = AverageMeter('Loss', ':.4e')
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    progress = ProgressMeter(
        loader_len,
        [batch_time, data_time, losses, top1, top5],
        prefix="{} Epoch: [{}]  rank  ".format(datetime.datetime.fromtimestamp(time.time()),epoch,local_rank))
    if args.ema_decay > 0:
        # apply EMA at validation stage
        ema.apply_shadow()
    # Set model to evaluate mode
    model.eval()

    end = time.time()

    # Iterate over data
    for i, (inputs, labels) in enumerate(dataloader):
        # measure data loading time
        data_time.update(time.time() - end)
        
        inputs = inputs.to(device)
        labels = labels.to(device)

        with torch.set_grad_enabled(False):
            
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            
            # measure accuracy and record loss
            acc1, acc5 = accuracy(outputs, labels, topk=(1, 5))
            losses.update(loss.item(), inputs.size(0))
            top1.update(acc1[0], inputs.size(0))
            top5.update(acc5[0], inputs.size(0))
            batch_time.update(time.time() - end)
            end = time.time()
            

    if args.ema_decay > 0:
        # restore the origin parameters after val
        ema.restore()
    # write val result to file
    resultWriter.write_csv([epoch, losses.avg, top1.avg.item(), top5.avg.item()])

    print('{}  Val  ***  rank:{}    Loss:{losses.avg:.2e}    Acc@1:{top1.avg:.2f}    Acc@5:{top5.avg:.2f}'.format(datetime.datetime.fromtimestamp(time.time()),local_rank,losses=losses, top1=top1, top5=top5))

    if epoch % args.save_epoch_freq == 0 and epoch != 0 and local_rank==0:
        if not os.path.exists(args.save_path):
            os.makedirs(args.save_path)
        torch.save(model.state_dict(), os.path.join(args.save_path, "epoch_" + str(epoch) + ".pth"))

    top1_acc = top1.avg.item()
    top5_acc = top5.avg.item()
    
    return top1_acc, top5_acc

def train_model(args, model, dataloader, loaders_len, criterion, optimizer, scheduler, use_gpu):
    '''
    train the model
    '''
    since = time.time()

    ema = None
    # exponential moving average
    if args.ema_decay > 0:
        ema = EMA(model, decay=args.ema_decay)
        ema.register()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0
    correspond_top5 = 0.0
    sample_time=0.0
    for epoch in range(args.start_epoch, args.num_epochs):

        epoch_time = time.time()
        sample_time=train(args, model, dataloader['train'], loaders_len['train'], criterion, optimizer, scheduler, use_gpu, epoch, ema)
        top1_acc, top5_acc = validate(args, model, dataloader['val'], loaders_len['val'], criterion, use_gpu, epoch, ema)
        epoch_time = time.time() - epoch_time
        print('Time of epoch-[{:d}/{:d}] : {:.0f}h {:.0f}m {:.0f}s\n'.format(epoch, args.num_epochs, epoch_time // 3600, (epoch_time % 3600) // 60, epoch_time % 60))

        # deep copy the model if it has higher top-1 accuracy
        if top1_acc > best_acc:
            best_acc = top1_acc
            correspond_top5 = top5_acc
            if args.ema_decay > 0:
                ema.apply_shadow()
            best_model_wts = copy.deepcopy(model.state_dict())
            if args.ema_decay > 0:
                ema.restore()

    print(os.path.split(args.save_path)[-1])
    print('{}  Best val top-1 Accuracy: {:4f}'.format(datetime.datetime.fromtimestamp(time.time()),best_acc))
    print('{}  Corresponding top-5 Accuracy: {:4f}'.format(datetime.datetime.fromtimestamp(time.time()),correspond_top5))
    
    time_elapsed = time.time() - since
    print('{}  Training complete in {:.0f}h {:.0f}m {:.0f}s, samples/sec {:.2f}'.format(datetime.datetime.fromtimestamp(time.time()),time_elapsed // 3600, (time_elapsed % 3600) // 60, time_elapsed % 60,sample_time))

    # load best model weights
    model.load_state_dict(best_model_wts)
    # save best model weights
    if args.save and local_rank==0:
        torch.save(model.state_dict(), os.path.join(args.save_path, 'best_model_wts-' + '{:.2f}'.format(best_acc) + '.pth'))
    return model

def write_pid_file(pid_file_path):
    '''Write pid file for watching the process later.
       In each round of case, we will write the current pid in the same path.
    '''
    if os.path.exists(pid_file_path):
        os.remove(pid_file_path)
    file_d=open(pid_file_path,"w")
    file_d.write("%s\n" % os.getpid())
    file_d.close()


if __name__ == '__main__':

    import warnings
    warnings.filterwarnings('ignore')

    parser = argparse.ArgumentParser(description='PyTorch implementation of MobileNetV3')
    # Root catalog of images
    parser.add_argument('--data-dir', type=str, default='/media/data2/chenjiarong/ImageData')
    parser.add_argument('--batch-size', type=int, default=256)
    parser.add_argument('--num-epochs', type=int, default=150)
    parser.add_argument('--lr', type=float, default=0.1)
    parser.add_argument('--num-workers', type=int, default=4)
    #parser.add_argument('--gpus', type=str, default='0')
    parser.add_argument('--print-freq', type=int, default=1000)
    parser.add_argument('--save-epoch-freq', type=int, default=1)
    parser.add_argument('--save-path', type=str, default='/media/data2/chenjiarong/saved-model/MobileNetV3')
    parser.add_argument('-save', default=False, action='store_true', help='save model or not')
    parser.add_argument('--resume', type=str, default='', help='For training from one checkpoint')
    parser.add_argument('--start-epoch', type=int, default=0, help='Corresponding to the epoch of resume')
    parser.add_argument('--ema-decay', type=float, default=0.9999, help='The decay of exponential moving average ')
    parser.add_argument('--dataset', type=str, default='ImageNet', help='The dataset to be trained')
    parser.add_argument('-dali', default=False, action='store_true', help='Using DALI or not')
    parser.add_argument('--mode', type=str, default='large', help='large or small MobileNetV3')
    # parser.add_argument('--num-class', type=int, default=1000)
    parser.add_argument('--width-multiplier', type=float, default=1.0, help='width multiplier')
    parser.add_argument('--dropout', type=float, default=0.2, help='dropout rate')
    parser.add_argument('--label-smoothing', type=float, default=0.1, help='label smoothing')
    parser.add_argument('--lr-decay', type=str, default='step', help='learning rate decay method, step, cos or sgdr')
    parser.add_argument('--step-size', type=int, default=3, help='step size in stepLR()')
    parser.add_argument('--gamma', type=float, default=0.99, help='gamma in stepLR()')
    parser.add_argument('--lr-min', type=float, default=0, help='minium lr using in CosineWarmupLR')
    parser.add_argument('--warmup-epochs', type=int, default=0, help='warmup epochs using in CosineWarmupLR')
    parser.add_argument('--T-0', type=int, default=10, help='T_0 in CosineAnnealingWarmRestarts')
    parser.add_argument('--T-mult', type=int, default=2, help='T_mult in CosineAnnealingWarmRestarts')
    parser.add_argument('--decay-rate', type=float, default=1, help='decay rate in CosineAnnealingWarmRestarts')
    parser.add_argument('--optimizer', type=str, default='sgd', help='optimizer')
    parser.add_argument('--weight-decay', type=float, default=1e-5, help='weight decay')
    parser.add_argument('--bn-momentum', type=float, default=0.1, help='momentum in BatchNorm2d')
    parser.add_argument('-use-seed', default=False, action='store_true', help='using fixed random seed or not')
    parser.add_argument('--seed', type=int, default=1, help='random seed')
    parser.add_argument('-deterministic', default=False, action='store_true', help='torch.backends.cudnn.deterministic')
    parser.add_argument('-nbd', default=False, action='store_true', help='no bias decay')
    parser.add_argument('-zero-gamma', default=False, action='store_true', help='zero gamma in BatchNorm2d when init')
    parser.add_argument('-mixup', default=False, action='store_true', help='mixup or not')
    parser.add_argument('--mixup-alpha', type=float, default=0.2, help='alpha used in mixup')
    parser.add_argument("--log_dir",
                    type=str,
                    default="/data/flagperf/training/result/",
                    help="Log directory in container.")
    
    args = parser.parse_args()
    write_pid_file(args.log_dir)
    args.lr_decay = args.lr_decay.lower()
    args.dataset = args.dataset.lower()
    args.optimizer = args.optimizer.lower()
    
    # folder to save what we need in this type: MobileNetV3-mode-dataset-width_multiplier-dropout-lr-batch_size-ema_decay-label_smoothing
    folder_name = ['MobileNetV3', args.mode, args.dataset, 'wm'+str(args.width_multiplier), 'dp'+str(args.dropout), 'lr'+str(args.lr), 'bs'+str(args.batch_size), 'ed'+str(args.ema_decay), 'ls'+str(args.label_smoothing), args.optimizer+str(args.weight_decay), 'bn'+str(args.bn_momentum), 'epochs'+str(args.num_epochs), 'seed'+(str(args.seed) if args.use_seed else 'None'), 'determin'+str(args.deterministic), 'NoBiasDecay'+str(args.nbd), 'zeroGamma'+str(args.zero_gamma), 'mixup'+(str(args.mixup_alpha) if args.mixup else 'False')]
    if args.lr_decay == 'step':
        folder_name.append(args.lr_decay+str(args.step_size)+'&'+str(args.gamma))
    elif args.lr_decay == 'cos':
        folder_name.append(args.lr_decay+str(args.warmup_epochs) + '&' + str(args.lr_min))
    elif args.lr_decay == 'sgdr':
        folder_name.append(args.lr_decay+str(args.T_0)+'&'+str(args.T_mult)+'&'+str(args.warmup_epochs)+'&'+str(args.decay_rate))
    folder_name = '-'.join(folder_name)
    args.save_path = os.path.join(args.save_path, folder_name)
    if not os.path.exists(args.save_path):
        os.makedirs(args.save_path)

    world_size = int(os.environ["WORLD_SIZE"])
    local_rank = int(os.environ['LOCAL_RANK'])
    dist.init_process_group(backend="nccl")
    torch.cuda.set_device(local_rank)
    # use gpu or not
    use_gpu = torch.cuda.is_available()
    print("use_gpu:{}".format(use_gpu))

    # set random seed
    if args.use_seed:
        print('Using fixed random seed')
        torch.manual_seed(args.seed)
    else:
        print('do not use fixed random seed')
    if use_gpu:
        if args.use_seed:
            torch.cuda.manual_seed(args.seed)
            if torch.cuda.device_count() > 1:
                torch.cuda.manual_seed_all(args.seed)
        if args.deterministic:
            torch.backends.cudnn.deterministic = True
            torch.backends.cudnn.benchmark = False
        else:
            torch.backends.cudnn.deterministic = False
            torch.backends.cudnn.benchmark = True
        print('torch.backends.cudnn.deterministic:' + str(args.deterministic))

    # read data
    # dataloaders = dataloaders(args)
    if args.dali and (args.dataset == 'tinyimagenet' or args.dataset == 'imagenet'):
        if args.dataset == 'imagenet':
            from DALIDataLoader import get_dali_imageNet_train_loader, get_dali_imageNet_val_loader
            train_loader, train_loader_len = get_dali_imageNet_train_loader(data_path=args.data_dir, batch_size=args.batch_size, seed=args.seed, num_threads=args.num_workers)
            val_loader, val_loader_len = get_dali_imageNet_val_loader(data_path=args.data_dir, batch_size=args.batch_size, seed=args.seed, num_threads=args.num_workers)
            dataloaders = {'train' : train_loader, 'val' : val_loader}
            loaders_len = {'train': train_loader_len, 'val' : val_loader_len}
        elif args.dataset == 'tinyimagenet':
            from DALIDataLoader import get_dali_tinyImageNet_train_loader, get_dali_tinyImageNet_val_loader
            train_loader, train_loader_len = get_dali_tinyImageNet_train_loader(data_path=args.data_dir, batch_size=args.batch_size, seed=args.seed, num_threads=args.num_workers)
            val_loader, val_loader_len = get_dali_tinyImageNet_val_loader(data_path=args.data_dir, batch_size=args.batch_size, seed=args.seed, num_threads=args.num_workers)
            dataloaders = {'train' : train_loader, 'val' : val_loader}
            loaders_len = {'train': train_loader_len, 'val' : val_loader_len}
    else:
        from DataLoader import dataloaders
        loaders = dataloaders(args)
        train_loader = loaders['train']
        train_loader_len = len(train_loader)
        val_loader = loaders['val']
        val_loader_len = len(val_loader)


        dataloaders = {'train' : train_loader, 'val' : val_loader}
        loaders_len = {'train': train_loader_len, 'val' : val_loader_len}

    # different input size and number of classes for different datasets
    if args.dataset == 'imagenet':
        input_size = 224
        num_class = 1000
    elif args.dataset == 'tinyimagenet':
        input_size = 56
        num_class = 200
    if args.dataset == 'cifar100':
        input_size = 32
        num_class = 100
    elif args.dataset == 'cifar10' or args.dataset == 'svhn':
        input_size = 32
        num_class = 10
    
    # get model
    model = MobileNetV3(mode=args.mode, classes_num=num_class, input_size=input_size, 
                    width_multiplier=args.width_multiplier, dropout=args.dropout, 
                    BN_momentum=args.bn_momentum, zero_gamma=args.zero_gamma)

    if use_gpu:
        model.cuda()
        model = torch.nn.parallel.DistributedDataParallel(model)
        
    else:
        model.to(torch.device('cpu'))

    if args.resume:
        if os.path.isfile(args.resume):
            print(("=> loading checkpoint '{}'".format(args.resume)))
            state_dict=torch.load(args.resume)
            new_state_dict= OrderedDict()
            for k,v in state_dict.items():
                if 'classifier' in k:
                    continue
                name="module."+k
                if 'featureList.1.conv2.1' in k:
                    name=name.replace('featureList.1.conv2.1','featureList.1.conv2.1.lastBN')
                new_state_dict[name]=v
            model.load_state_dict(new_state_dict,strict=False)
        else:
            print(("=> no checkpoint found at '{}'".format(args.resume)))
            exit()

    if args.label_smoothing > 0:
        # using Label Smoothing
        criterion = LabelSmoothingLoss(num_class, label_smoothing=args.label_smoothing)
    else:
        criterion = nn.CrossEntropyLoss()
    
    if args.optimizer == 'sgd':
        if args.nbd:
            from NoBiasDecay import noBiasDecay
            optimizer_ft = optim.SGD(
                # no bias decay
                noBiasDecay(model, args.lr, args.weight_decay), 
                momentum=0.9)
        else:
            optimizer_ft = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
    elif args.optimizer == 'rmsprop':
        optimizer_ft = optim.RMSprop(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
    elif args.optimizer == 'adam':
        optimizer_ft = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)

    if args.lr_decay == 'step':
        # Decay LR by a factor of 0.99 every 3 epoch
        lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=args.step_size, gamma=args.gamma)
    elif args.lr_decay == 'cos':
        lr_scheduler = CosineWarmupLR(optimizer=optimizer_ft, epochs=args.num_epochs, iter_in_one_epoch=loaders_len['train'], lr_min=args.lr_min, warmup_epochs=args.warmup_epochs)
    elif args.lr_decay == 'sgdr':
        lr_scheduler = CosineAnnealingWarmRestarts(optimizer=optimizer_ft, T_0=args.T_0, T_mult=args.T_mult, warmup_epochs=args.warmup_epochs, decay_rate=args.decay_rate)

    model = train_model(args=args,
                        model=model,
                        dataloader=dataloaders,
                        loaders_len=loaders_len,
                        criterion=criterion,
                        optimizer=optimizer_ft,
                        scheduler=lr_scheduler,
                        use_gpu=use_gpu)