"test/vscode:/vscode.git/clone" did not exist on "c00222cf87185b9c8d6c0e64ebcea535138f0681"
Commit d831e0a4 authored by renzhc's avatar renzhc
Browse files

updated readme

parent ee83f5df
......@@ -125,51 +125,11 @@ data
### tiny-imagenet-200
由于ImageNet完整数据集较大,可以使用[tiny-imagenet-200](http://cs231n.stanford.edu/tiny-imagenet-200.zip)进行测试,可于SCNet快速下载[tiny-imagenet-200-scnet](http://113.200.138.88:18080/aidatasets/project-dependency/tiny-imagenet-200) ,此时需要对配置脚本进行一些修改:
- dataset配置文件(configs/\_\_base\_\_/datasets/xxx.py)中,需要对以下字段进行修改
```python
# dataset settings
dataset_type = 'CustomDataset' # 修改为CustomDataset
data_preprocessor = dict(
num_classes=200, # 修改类别为200
...
)
...
train_dataloader = dict(
batch_size=32,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/imagenet',
data_prefix='train', # 改为data_prefix='train',val_dataloader中同理
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
```
- model配置文件(configs/\_\_base\_\_/models/xxx.py)中,同样需要将类别相关的值设置为200。
```python
# model settings
model = dict(
type='ImageClassifier',
...
head=dict(
type='LinearClsHead',
num_classes=200, # 将类别数改为200
...
))
```
mmpretrain-mmcv中提供了使用tiny-imagenet-200进行训练的若干配置脚本,可参考进行设置。
### Tiny-ImageNet-200
## 训练
由于ImageNet完整数据集较大,可以使用[tiny-imagenet-200](http://cs231n.stanford.edu/tiny-imagenet-200.zip)进行测试,可于SCNet快速下载[tiny-imagenet-200-scnet](http://113.200.138.88:18080/aidatasets/project-dependency/tiny-imagenet-200) ,此时需要对配置脚本进行一些修改,可参照mmpretrain-mmcv子仓库进行配置,其中提供了使用Tiny-ImageNet-200进行训练的若干配置脚本。
将训练数据集解压后放置于mmpretrain-mmcv/data/,对于tiny-imagenet,目录结构如下:
将训练数据集解压后放置于mmpretrain-mmcv/data/,对于Tiny-ImageNet,目录结构如下:
```
data
......@@ -179,26 +139,35 @@ data
├── val/
├── wnids.txt
└── words.txt
```
### 单机8卡训练
## 训练
tiny-imagenet-200
Tiny-ImageNet-200
```shell
bash tools/dist_train.sh mobilenet-v2-test.py 8
```
imagenet
ImageNet
```shell
bash tools/dist_train.sh configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py 8
```
如需其他卡数训练,将命令中的8改为所需卡数即可
tips:如需其他卡数训练,将命令中的8改为所需卡数即可;如遇端口占用问题,可在tools/dist_train.sh修改端口。
## Result
![img](https://developer.hpccube.com/codes/modelzoo/vit_pytorch/-/raw/master/image/README/1695381570003.png)
### 精度
测试数据使用的是ImageNet数据集,使用的加速卡是DCU Z100L。
如遇端口占用问题,可在tools/dist_train.sh修改端口
| 卡数 | 精度 |
|:---:|:-------------------------:|
| 8 | top1:0.71764;top5:0.90386 |
## 应用场景
......
mmpretrain-mmcv @ 12c02d09
Subproject commit 64c15d709b3dfaa146df50951e9c1a14467bcf4e
Subproject commit 12c02d0917bcbfbac86f52b93f02ce87edb7835b
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment