efficientnet.py 7.57 KB
Newer Older
sugon_cxj's avatar
sugon_cxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch
import torch.nn as nn
import torch.nn.functional as F
import time

conv1_first_time = 0
bn1_first_time = 0
nl1_first_time = 0
conv1_time = 0
bn1_time = 0
nl1_time = 0
conv2_time = 0
bn2_time = 0
nl2_time = 0
conv3_time = 0
bn3_time = 0
se_avg_time = 0
se_linear1_time = 0
se_nl1_time = 0
se_linear2_time = 0
se_nl2_time = 0
se_mult_time = 0
conv2_last_time = 0
bn2_last_time = 0
nl2_last_time = 0
avg_pool_time = 0
linear_time = 0


class Block(nn.Module):
    def __init__(self, in_planes, exp_factor, out_planes, kernel_size, stride):
        super(Block, self).__init__()

        self.exp_size = in_planes * exp_factor
        self.in_planes = in_planes
        self.stride = stride
        self.reduction_ratio = 4

        # Expansion
        self.conv1 = nn.Conv2d(in_planes, self.exp_size, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn1 = nn.BatchNorm2d(num_features=self.exp_size)
        self.nl1 = nn.SiLU()  # non-linearity

        # Depthwise Convolution
        self.conv2 = nn.Conv2d(self.exp_size, self.exp_size, kernel_size=kernel_size, stride=stride,
                               padding=(kernel_size - 1) // 2, groups=self.exp_size, bias=False)
        self.bn2 = nn.BatchNorm2d(self.exp_size)
        self.nl2 = nn.SiLU()  # non-linearity

        # Squeeze-and-Excite
        self.se_avg_pool = nn.AdaptiveAvgPool2d(1)
        self.se_linear1 = nn.Linear(self.exp_size, self.exp_size // self.reduction_ratio, bias=False)
        self.se_nl1 = nn.SiLU()
        self.se_linear2 = nn.Linear(self.exp_size // self.reduction_ratio, self.exp_size, bias=False)
        self.se_nl2 = nn.Sigmoid()

        # Linear Pointwise Convolution
        self.conv3 = nn.Conv2d(self.exp_size, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn3 = nn.BatchNorm2d(out_planes)

        self.shortcut = nn.Sequential()
        if stride == 1 and in_planes != out_planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False),
                nn.BatchNorm2d(out_planes),
            )

    def forward(self, x, expand=False):
        global conv1_time, bn1_time, nl1_time, conv2_time, bn2_time, \
            nl2_time, se_avg_time, se_linear1_time, se_nl1_time, \
            se_linear2_time, se_nl2_time, se_mult_time, conv3_time, bn3_time
        # Conv1
        start = time.time()
        out = self.conv1(x)
        conv1_time += (time.time() - start)
        start = time.time()
        out = self.bn1(out)
        bn1_time += (time.time() - start)
        start = time.time()
        out = self.nl1(out)
        nl1_time += (time.time() - start)
        start = time.time()
        # Conv2
        out = self.conv2(out)
        conv2_time += (time.time() - start)
        start = time.time()
        out = self.bn2(out)
        bn2_time += (time.time() - start)
        start = time.time()
        out = self.nl2(out)
        nl2_time += (time.time() - start)
        # SE
        batch_size, channel_num, _, _ = out.size()
        start = time.time()
        out_se = self.se_avg_pool(out).view(batch_size, channel_num)
        se_avg_time += (time.time() - start)
        start = time.time()
        out_se = self.se_linear1(out_se)
        se_linear1_time += (time.time() - start)
        start = time.time()
        out_se = self.se_nl1(out_se)
        se_nl1_time += (time.time() - start)
        start = time.time()
        out_se = self.se_linear2(out_se)
        se_linear2_time += (time.time() - start)
        start = time.time()
        out_se = self.se_nl2(out_se)
        se_nl2_time += (time.time() - start)
        out_se = out_se.view(batch_size, channel_num, 1, 1)
        start = time.time()
        out = out * out_se
        se_mult_time += (time.time() - start)
        # Conv3
        start = time.time()
        out = self.conv3(out)
        conv3_time += (time.time() - start)
        start = time.time()
        out = self.bn3(out)
        bn3_time += (time.time() - start)
        # Residual
        out = out + self.shortcut(x) if self.stride == 1 else out
        return out


class EfficientNet(nn.Module):
    def __init__(self, mode='small', num_classes=10):
        super(EfficientNet, self).__init__()

        self.cfg = [
            # expansion, out_planes, num_blocks, kernel_size, stride
            [1, 16, 1, 3, 1],  # NOTE: change stride 2 -> 1 for CIFAR10
            [6, 24, 2, 3, 1],
            [6, 40, 2, 5, 2],
            [6, 80, 3, 3, 2],
            [6, 112, 3, 5, 1],
            [6, 192, 4, 5, 2],
            [6, 320, 1, 3, 1]  # NOTE: change stride 2 -> 1 for CIFAR10
        ]

        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(32)
        self.nl1 = nn.SiLU()  # non-linearity
        self.layers = []
        in_planes = 32
        # Block
        layer = []
        for expansion, out_planes, num_blocks, kernel, stride in self.cfg:
            strides = [stride] + [1] * (num_blocks - 1)
            for stride in strides:
                # in_planes, exp_size, out_planes, kernel_size, stride
                layer.append(Block(in_planes, expansion, out_planes, kernel, stride))
                in_planes = out_planes
        self.layers = nn.Sequential(*layer)
        self.conv2 = nn.Conv2d(out_planes, 1280, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn2 = nn.BatchNorm2d(1280)
        self.nl2 = nn.SiLU()
        self.linear = nn.Linear(1280, num_classes)

        self.mode = 1

    def change_mode(self):
        self.mode = 2

    def forward(self, x):
        global conv1_first_time, bn1_first_time, nl1_first_time, conv1_time, \
            bn1_time, nl1_time, conv2_time, bn2_time, nl2_time, se_avg_time, \
            se_linear1_time, se_nl1_time, se_linear2_time, se_nl2_time, \
            se_mult_time, conv3_time, bn3_time, conv2_last_time, bn2_last_time, \
            nl2_last_time, avg_pool_time, linear_time

        # first
        start = time.time()
        out = self.conv1(x)
        conv1_first_time += (time.time() - start)
        start = time.time()
        out = self.bn1(out)
        bn1_first_time += (time.time() - start)
        start = time.time()
        out = self.nl1(out)
        nl1_first_time += (time.time() - start)
        # blocks
        out = self.layers(out)
        # 1x1 Conv
        start = time.time()
        out = self.conv2(out)
        conv2_last_time += (time.time() - start)
        start = time.time()
        out = self.bn2(out)
        bn2_last_time += (time.time() - start)
        start = time.time()
        out = self.nl2(out)
        nl2_last_time += (time.time() - start)
        # NOTE: change pooling kernel_size 7 -> 4 for CIFAR10
        start = time.time()
        out = F.avg_pool2d(out, 4)
        avg_pool_time += (time.time() - start)
        out = out.view(out.size(0), -1)
        # Linear
        start = time.time()
        out = self.linear(out)
        linear_time += (time.time() - start)

        # Pruning
        if self.mode == 1:
            return out

        # Measurement
        return out, conv1_first_time, bn1_first_time, nl1_first_time, conv1_time, \
               bn1_time, nl1_time, conv2_time, bn2_time, nl2_time, se_avg_time, \
               se_linear1_time, se_nl1_time, se_linear2_time, se_nl2_time, se_mult_time, \
               conv3_time, bn3_time, conv2_last_time, bn2_last_time, nl2_last_time, \
               avg_pool_time, linear_time


def test():
    net = EfficientNet()
    x = torch.randn(2, 3, 32, 32)
    y = net(x)
    print(y.size())

# test()

def efficientnet(num_classes=10):
    return EfficientNet(num_classes=num_classes)