collect_modelzoo.py 5.72 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env python
# Copyright (c) OpenMMLab. All rights reserved.
import os
import os.path as osp
import re
from collections import defaultdict
from glob import glob

from addict import Addict
from titlecase import titlecase


def _get_model_docs():
    """Get all model document files.

    Returns:
        list[str]: file paths
    """
    config_root = osp.join('..', '..', 'configs')
    pattern = osp.sep.join(['*'] * 4) + '.md'
    docs = glob(osp.join(config_root, pattern))
    docs = [doc for doc in docs if '_base_' not in doc]
    return docs


def _parse_model_doc_path(path):
    """Parse doc file path.

    Typical path would be like:

        configs/<task>/<algorithm>/<dataset>/<setting>.md

    An example is:

        "configs/animal_2d_keypoint/topdown_heatmap/
        animalpose/resnet_animalpose.md"

    Returns:
        tuple:
        - task (str): e.g. ``'Animal 2D Keypoint'``
        - dataset (str): e.g. ``'animalpose'``
        - keywords (tuple): e.g. ``('topdown heatmap', 'resnet')``
    """
    _path = path.split(osp.sep)
    _rel_path = _path[_path.index('configs'):]

    # get task
    def _titlecase_callback(word, **kwargs):
        if word == '2d':
            return '2D'
        if word == '3d':
            return '3D'

    task = titlecase(
        _rel_path[1].replace('_', ' '), callback=_titlecase_callback)

    # get dataset
    dataset = _rel_path[3]

    # get keywords
    keywords_algo = (_rel_path[2], )
    keywords_setting = tuple(_rel_path[4][:-3].split('_'))
    keywords = keywords_algo + keywords_setting

    return task, dataset, keywords


def _get_paper_refs():
    """Get all paper references.

    Returns:
        Dict[str, List[str]]: keys are paper categories and values are lists
        of paper paths.
    """
    papers = glob('../src/papers/*/*.md')
    paper_refs = defaultdict(list)
    for fn in papers:
        category = fn.split(osp.sep)[3]
        paper_refs[category].append(fn)

    return paper_refs


def _parse_paper_ref(fn):
    """Get paper name and indicator pattern from a paper reference file.

    Returns:
        tuple:
        - paper_name (str)
        - paper_indicator (str)
    """
    indicator = None
    with open(fn, 'r', encoding='utf-8') as f:
        for line in f.readlines():
            if line.startswith('<summary'):
                indicator = line
                break
    if indicator is None:
        raise ValueError(f'Invalid paper reference file {fn}')

    paper_name = re.sub(r'\<.*?\>', '', indicator).strip()
    return paper_name, indicator


def main():

    # Build output folders
    os.makedirs('model_zoo', exist_ok=True)
    os.makedirs('model_zoo_papers', exist_ok=True)

    # Collect all document contents
    model_doc_list = _get_model_docs()
    model_docs = Addict()

    for path in model_doc_list:
        task, dataset, keywords = _parse_model_doc_path(path)
        with open(path, 'r', encoding='utf-8') as f:
            doc = {
                'task': task,
                'dataset': dataset,
                'keywords': keywords,
                'path': path,
                'content': f.read()
            }
        model_docs[task][dataset][keywords] = doc

    # Write files by task
    for task, dataset_dict in model_docs.items():
        lines = [f'# {task}', '']
        for dataset, keywords_dict in dataset_dict.items():
            lines += [
                '<hr/>', '<br/><br/>', '', f'## {titlecase(dataset)} Dataset',
                ''
            ]

            for keywords, doc in keywords_dict.items():
                keyword_strs = [
                    titlecase(x.replace('_', ' ')) for x in keywords
                ]
                dataset_str = titlecase(dataset)
                if dataset_str in keyword_strs:
                    keyword_strs.remove(dataset_str)

                lines += [
                    '<br/>', '',
                    (f'### {" + ".join(keyword_strs)}'
                     f' on {dataset_str}'), '', doc['content'], ''
                ]

        fn = osp.join('model_zoo', f'{task.replace(" ", "_").lower()}.md')
        with open(fn, 'w', encoding='utf-8') as f:
            f.write('\n'.join(lines))

    # Write files by paper
    paper_refs = _get_paper_refs()

    for paper_cat, paper_list in paper_refs.items():
        lines = []
        for paper_fn in paper_list:
            paper_name, indicator = _parse_paper_ref(paper_fn)
            paperlines = []
            for task, dataset_dict in model_docs.items():
                for dataset, keywords_dict in dataset_dict.items():
                    for keywords, doc_info in keywords_dict.items():

                        if indicator not in doc_info['content']:
                            continue

                        keyword_strs = [
                            titlecase(x.replace('_', ' ')) for x in keywords
                        ]

                        dataset_str = titlecase(dataset)
                        if dataset_str in keyword_strs:
                            keyword_strs.remove(dataset_str)
                        paperlines += [
                            '<br/>', '',
                            (f'### {" + ".join(keyword_strs)}'
                             f' on {dataset_str}'), '', doc_info['content'], ''
                        ]
            if paperlines:
                lines += ['<hr/>', '<br/><br/>', '', f'## {paper_name}', '']
                lines += paperlines

        if lines:
            lines = [f'# {titlecase(paper_cat)}', ''] + lines
            with open(
                    osp.join('model_zoo_papers', f'{paper_cat.lower()}.md'),
                    'w',
                    encoding='utf-8') as f:
                f.write('\n'.join(lines))


if __name__ == '__main__':
    print('collect model zoo documents')
    main()