utils.py 12.4 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#           http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import defaultdict, deque
import datetime
import errno
import os
import time

import torch
import torch.distributed as dist


class ScratchPad:
    target_n = None
    target_labels_padded = None
    target_boxes_padded = None
    target_matched_idxs = None
    gt_classes_target = None
    batch_size_vector = None


class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self, group=None):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
        dist.barrier(group=group)
        dist.all_reduce(t, group=group)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
            median=self.median,
            avg=self.avg,
            global_avg=self.global_avg,
            max=self.max,
            value=self.value)


def all_gather(data, group):
    """
    Run all_gather on arbitrary picklable data (not necessarily tensors)
    Args:
        data: any picklable object
    Returns:
        list[data]: list of data gathered from each rank
    """
    world_size = group.size() if group else get_world_size()
    if world_size == 1:
        return [data]
    data_list = [None] * world_size
    dist.all_gather_object(object_list=data_list, obj=data, group=group)
    return data_list


def broadcast(data, src, group):
    """
    Run broadcast on arbitrary picklable data (not necessarily tensors)
    Args:
        data: any picklable object
        src: Source rank from which to broadcast data
    Returns:
        list[data]: list of data gathered from each rank
    """
    world_size = group.size() if group else get_world_size()
    if world_size == 1:
        return data
    data_list = data if isinstance(data, list) else [data]
    dist.broadcast_object_list(object_list=data_list, src=src, group=group)
    return data_list if isinstance(data, list) else data_list[0]


def reduce_dict(input_dict, group, average=True):
    """
    Args:
        input_dict (dict): all the values will be reduced
        average (bool): whether to do average or sum
    Reduce the values in the dictionary from all processes so that all processes
    have the averaged results. Returns a dict with the same fields as
    input_dict, after reduction.
    """
    world_size = group.size() if group else get_world_size()
    if world_size < 2:
        return input_dict
    with torch.no_grad():
        names = []
        values = []
        # sort the keys so that they are consistent across processes
        for k in sorted(input_dict.keys()):
            names.append(k)
            values.append(input_dict[k])
        values = torch.stack(values, dim=0)
        dist.all_reduce(tensor=values, group=group)
        if average:
            values /= world_size
        reduced_dict = {k: v for k, v in zip(names, values)}
    return reduced_dict


class SimpleTimer(object):
    def __init__(self, prefix=""):
        self.prefix = prefix

    def __enter__(self):
        self.start = time.time()
        return self

    def __exit__(self, *args):
        self.end = time.time()
        run_time = self.end - self.start
        print(f"{self.prefix}{run_time}")


class MetricLogger(object):
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter
        self.summary = defaultdict(lambda: None)
        self.current_iter = 0

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError("'{}' object has no attribute '{}'".format(
            type(self).__name__, attr))

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append(
                "{}: {}".format(name, str(meter))
            )
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self, group=None):
        for meter in self.meters.values():
            meter.synchronize_between_processes(group=group)

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None):
        self.current_iter = 0
        self.summary['samples'] = 0
        if not header:
            header = ''
        start_time = time.time()
        self.summary['start_time'] = start_time
        end = time.time()
        iter_time = SmoothedValue(fmt='{avg:.4f}')
        data_time = SmoothedValue(fmt='{avg:.4f}')
        space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
        if torch.cuda.is_available():
            log_msg = self.delimiter.join([
                header,
                '[{0' + space_fmt + '}/{1}]',
                'eta: {eta}',
                '{meters}',
                'time: {time}',
                'data: {data}',
                'max mem: {memory:.0f}'
            ])
        else:
            log_msg = self.delimiter.join([
                header,
                '[{0' + space_fmt + '}/{1}]',
                'eta: {eta}',
                '{meters}',
                'time: {time}',
                'data: {data}'
            ])
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if self.current_iter % print_freq == 0 or self.current_iter == len(iterable) - 1:
                eta_seconds = iter_time.global_avg * (len(iterable) - self.current_iter)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                if torch.cuda.is_available():
                    print(log_msg.format(
                        self.current_iter, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time),
                        memory=torch.cuda.max_memory_allocated() / MB))
                else:
                    print(log_msg.format(
                        self.current_iter, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time)))
            self.current_iter += 1
            end = time.time()
            self.summary['samples'] += len(obj[0])
            self.summary['end_time'] = end

        end_time = time.time()
        total_time = end_time - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print('{} Total time: {} ({:.4f} s / it)'.format(
            header, total_time_str, total_time / len(iterable)))


def collate_fn(batch):
    return tuple(zip(*batch))


def warmup_lr_scheduler(optimizer, start_iter, warmup_iters, warmup_factor):

    def f(x):
        x = x + start_iter
        if x >= warmup_iters:
            return 1
        alpha = float(x) / warmup_iters
        return warmup_factor * (1 - alpha) + alpha

    return torch.optim.lr_scheduler.LambdaLR(optimizer, f)


def mkdir(path):
    try:
        os.makedirs(path)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise


def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    import builtins as __builtin__
    builtin_print = __builtin__.print

    def print(*args, **kwargs):
        force = kwargs.pop('force', False)
        if is_master or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)


def barrier(group):
    if not is_dist_avail_and_initialized():
        return
    torch.distributed.barrier(group)


def init_distributed_mode(args):
    if args.world_size > 1 : 
        args.rank = args.local_rank
        args.world_size = args.world_size
        args.gpu = args.rank
    elif 'SLURM_PROCID' in os.environ:
        args.rank = int(os.environ['SLURM_PROCID'])
        args.gpu = args.rank % torch.cuda.device_count()
    else:
        print('Not using distributed mode')
        args.distributed = False
        args.num_train_ranks = 1
        args.num_eval_ranks = 1
        args.rank = 0
        args.ranks = 1
        args.train_ranks = [0]
        args.eval_ranks = [0]
        args.train_rank = 0
        args.eval_rank = 0
        return None, None

    args.distributed = True

    torch.cuda.set_device(args.gpu)
    args.dist_backend = 'nccl'
    print(f'| distributed init (rank {args.rank}): {args.dist_url}')
    if args.cuda_graphs or args.cuda_graphs_eval:
        os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
    torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                         world_size=args.world_size, rank=args.rank)
    torch.distributed.barrier()

    args.ranks = list(range(args.world_size))
    if args.num_eval_ranks is None:
        args.num_train_ranks = args.world_size
        args.num_eval_ranks = args.world_size

        args.train_ranks = args.ranks
        args.eval_ranks = args.ranks
        args.train_rank = args.rank
        args.eval_rank = args.rank
    else:
        args.num_train_ranks = args.world_size - args.num_eval_ranks

        args.train_ranks = args.ranks[:args.num_train_ranks]
        args.eval_ranks = args.ranks[args.num_train_ranks:]
        args.train_rank = args.rank
        args.eval_rank = args.rank - args.num_train_ranks

    assert 1<=args.num_train_ranks<=args.world_size, "Number of training ranks must be between 1 and world size"
    assert 1<=args.num_eval_ranks<=args.world_size, "Number of validation ranks must be between 1 and world size"

    # create training and validation comm groups
    train_group = torch.distributed.new_group(ranks=args.train_ranks)
    eval_group = torch.distributed.new_group(ranks=args.eval_ranks)

    setup_for_distributed(args.train_rank==0 or args.eval_rank==0)

    # init new comms
    tmp_tensor = torch.ones([1], device='cuda')
    torch.distributed.all_reduce(tmp_tensor, group=train_group)
    torch.distributed.all_reduce(tmp_tensor, group=eval_group)

    return train_group, eval_group