retinanet.py 54.4 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#           http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from collections import OrderedDict
import warnings

import torch
from torch import nn, Tensor
from torch.hub import load_state_dict_from_url
from typing import Dict, List, Tuple, Optional

from model.anchor_utils import AnchorGenerator
from model.transform import GeneralizedRCNNTransform
from model.backbone_utils import resnet_fpn_backbone, _validate_trainable_layers
from model.feature_pyramid_network import LastLevelP6P7
from model.focal_loss import sigmoid_focal_loss, sigmoid_focal_loss_masked, sigmoid_focal_loss_masked_fused
from model.boxes import box_iou, clip_boxes_to_image, batched_nms
from model.utils import Matcher, MatcherBatch, overwrite_eps, BoxCoder

from .frozen_bn import FrozenBatchNorm2d
from torchvision.ops import misc as misc_nn_ops

from mlperf_logger import mllogger
from mlperf_logging.mllog.constants import WEIGHTS_INITIALIZATION
import utils


try:
    from apex.contrib.conv_bias_relu import ConvBiasReLU, ConvBias
except ImportError as err:
    print("Could not import APEX fused Conv-Bias-ReLU, it's fine if you do not use --apex-head")


__all__ = [
    "retinanet_from_backbone",
    "retinanet_resnet50_fpn",
    "retinanet_resnet101_fpn",
    "retinanet_resnext50_32x4d_fpn",
    "retinanet_resnext101_32x8d_fpn",
]


class GradClone_(torch.autograd.Function):
    @staticmethod
    @torch.cuda.amp.custom_fwd
    def forward(ctx, x):
        return x

    @staticmethod
    @torch.cuda.amp.custom_bwd
    def backward(ctx, grad_output):
        return grad_output.clone()


GradClone = GradClone_.apply


def _sum(x: List[Tensor]) -> Tensor:
    res = x[0]
    for i in x[1:]:
        res = res + i
    return res


def cudnn_fusion_warmup(bs_list):
    hw_dim_list = [100, 50, 25, 13, 7]

    for bs in bs_list:
        for hw in hw_dim_list:
            ConvBiasReLU(torch.rand([bs, 256, hw, hw], dtype=torch.half).to(memory_format=torch.channels_last).cuda(),
                         torch.rand([256, 256, 3, 3], dtype=torch.half).to(memory_format=torch.channels_last).cuda(),
                         torch.rand([1, 256, 1, 1], dtype=torch.half).to(memory_format=torch.channels_last).cuda(), 1, 1)
            ConvBias(torch.rand([bs, 256, hw, hw], dtype=torch.half).to(memory_format=torch.channels_last).cuda(),
                     torch.rand([2376, 256, 3, 3], dtype=torch.half).to(memory_format=torch.channels_last).cuda(),
                     torch.rand([1, 2376, 1, 1], dtype=torch.half).to(memory_format=torch.channels_last).cuda(), 1, 1)
            ConvBias(torch.rand([bs, 256, hw, hw], dtype=torch.half).to(memory_format=torch.channels_last).cuda(),
                     torch.rand([36, 256, 3, 3], dtype=torch.half).to(memory_format=torch.channels_last).cuda(),
                     torch.rand([1, 36, 1, 1], dtype=torch.half).to(memory_format=torch.channels_last).cuda(), 1, 1)


class RetinaNetHead(nn.Module):
    """
    A regression and classification head for use in RetinaNet.

    Args:
        in_channels (int): number of channels of the input feature
        num_anchors (int): number of anchors to be predicted
        num_classes (int): number of classes to be predicted
    """

    def __init__(self, in_channels, num_anchors, num_classes, fusion=False):
        super().__init__()
        self.classification_head = RetinaNetClassificationHead(in_channels, num_anchors, num_classes, fusion=fusion,
            module_name="module.head.classification_head")
        self.regression_head = RetinaNetRegressionHead(in_channels, num_anchors, fusion=fusion,
            module_name="module.head.regression_head")

    def compute_loss(self, targets, head_outputs, anchors, matched_idxs):
        # type: (List[Dict[str, Tensor]], Dict[str, Tensor], List[Tensor], List[Tensor]) -> Dict[str, Tensor]
        return {
            'classification': self.classification_head.compute_loss(targets, head_outputs, matched_idxs),
            'bbox_regression': self.regression_head.compute_loss(targets, head_outputs, anchors, matched_idxs),
        }

    def forward(self, x):
        return [self.classification_head(x), self.regression_head(x)]


class RetinaNetClassificationHead(nn.Module):
    """
    A classification head for use in RetinaNet.

    Args:
        in_channels (int): number of channels of the input feature
        num_anchors (int): number of anchors to be predicted
        num_classes (int): number of classes to be predicted
    """

    def __init__(self, in_channels, num_anchors, num_classes, prior_probability=0.01, fusion=False, module_name=""):
        super().__init__()

        conv = []
        for _ in range(4):
            conv.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1))
            conv.append(nn.ReLU())
        self.conv = nn.Sequential(*conv)

        for name, layer in self.conv.named_children():
            if isinstance(layer, nn.Conv2d):
                mllogger.event(key=WEIGHTS_INITIALIZATION, metadata={"tensor": f"{module_name}.conv.{name}.weight"})
                torch.nn.init.normal_(layer.weight, std=0.01)
                mllogger.event(key=WEIGHTS_INITIALIZATION, metadata={"tensor": f"{module_name}.conv.{name}.bias"})
                torch.nn.init.constant_(layer.bias, 0)

        self.cls_logits = nn.Conv2d(in_channels, num_anchors * num_classes, kernel_size=3, stride=1, padding=1)
        mllogger.event(key=WEIGHTS_INITIALIZATION, metadata={"tensor": f"{module_name}.cls_logits.weight"})
        torch.nn.init.normal_(self.cls_logits.weight, std=0.01)
        mllogger.event(key=WEIGHTS_INITIALIZATION, metadata={"tensor": f"{module_name}.cls_logits.bias"})
        torch.nn.init.constant_(self.cls_logits.bias, -math.log((1 - prior_probability) / prior_probability))

        self.num_classes = num_classes
        self.num_anchors = num_anchors

        # This is to fix using det_utils.Matcher.BETWEEN_THRESHOLDS in TorchScript.
        # TorchScript doesn't support class attributes.
        # https://github.com/pytorch/vision/pull/1697#issuecomment-630255584
        self.BETWEEN_THRESHOLDS = Matcher.BETWEEN_THRESHOLDS

        self.register_buffer("one", torch.Tensor([1.]))

        self.fusion = fusion

    # --- original implementation ---
    def compute_loss(self, targets, head_outputs, matched_idxs):
        # type: (List[Dict[str, Tensor]], Dict[str, Tensor], List[Tensor]) -> Tensor
        losses = []

        cls_logits = head_outputs['cls_logits']

        for labels_per_image, cls_logits_per_image, matched_idxs_per_image in zip(targets['labels'], cls_logits, matched_idxs):
            # determine only the foreground
            foreground_idxs_per_image = matched_idxs_per_image >= 0
            num_foreground = foreground_idxs_per_image.sum()

            # create the target classification
            gt_classes_target = torch.zeros_like(cls_logits_per_image)
            gt_classes_target[
                foreground_idxs_per_image,
                labels_per_image[matched_idxs_per_image[foreground_idxs_per_image]]
            ] = 1.0

            # find indices for which anchors should be ignored
            valid_idxs_per_image = matched_idxs_per_image != self.BETWEEN_THRESHOLDS

            # compute the classification loss
            losses.append(sigmoid_focal_loss(
                cls_logits_per_image[valid_idxs_per_image],
                gt_classes_target[valid_idxs_per_image],
                reduction='sum',
            ) / max(1, num_foreground))

        # doesn't matter which targets['?'] is taken, this represent the batch size
        return _sum(losses) / len(targets['boxes'])

    def compute_loss_prologue(self, target_labels, matched_idxs, one_hot):
        # determine only the foreground
        foreground_idxs_ = matched_idxs >= 0
        num_foreground_ = foreground_idxs_.sum(dim=1)

        # find indices for which anchors should be ignored
        valid_idxs_ = matched_idxs != self.BETWEEN_THRESHOLDS

        # TODO: unable to parallelize, try again
        for i, (labels_per_image, matched_idxs_per_image, foreground_idxs_per_image) in \
                enumerate(zip(target_labels, matched_idxs, foreground_idxs_)):

            # create the target classification
            if one_hot:
                utils.ScratchPad.gt_classes_target[i][
                    foreground_idxs_per_image,
                    labels_per_image[matched_idxs_per_image[foreground_idxs_per_image]]
                ] = 1.0
            else:
                utils.ScratchPad.gt_classes_target[i][foreground_idxs_per_image] = \
                    labels_per_image[matched_idxs_per_image[foreground_idxs_per_image]]

        return utils.ScratchPad.gt_classes_target, num_foreground_, valid_idxs_

    def compute_loss_prologue_padded(self, target_labels, matched_idxs, one_hot, max_boxes):
        # buffers are initialized in init_scratchpad
        # utils.ScratchPad.gt_classes_target.fill_(0 if one_hot else -1)

        # determine only the foreground
        foreground_idxs_ = matched_idxs >= 0
        num_foreground_ = foreground_idxs_.sum(dim=1)

        # find indices for which anchors should be ignored
        valid_idxs_ = matched_idxs != self.BETWEEN_THRESHOLDS

        if one_hot:
            idxs = torch.gather(target_labels, 1, torch.where(foreground_idxs_, matched_idxs, max_boxes))
            utils.ScratchPad.gt_classes_target.scatter_(2, idxs[:, :, None], 1)
            gt_classes_target = utils.ScratchPad.gt_classes_target[:, :, :-1]
        else:
            utils.ScratchPad.gt_classes_target = \
                torch.gather(target_labels, 1, torch.where(foreground_idxs_, matched_idxs, max_boxes))
            gt_classes_target = utils.ScratchPad.gt_classes_target

        return gt_classes_target, num_foreground_, valid_idxs_

    def compute_loss_core(self, cls_logits, gt_classes_target, valid_idxs, num_foreground, fused_focal_loss=False):
        # notice that in the original implementation, the focal loss input dimension may differ
        if not fused_focal_loss:
            losses = sigmoid_focal_loss_masked(cls_logits, gt_classes_target, valid_idxs[:, :, None], reduction='sum')
        else:
            losses = sigmoid_focal_loss_masked_fused(cls_logits, gt_classes_target, valid_idxs, reduction='sum',
                                                     one_ptr=self.one)
        losses = losses / num_foreground

        return _sum(losses) / num_foreground.size(0)

    def forward(self, x):
        # type: (List[Tensor]) -> Tensor
        all_cls_logits = []

        # since weights are shared, we can cast weights and biases only one time per iteration
        if self.fusion:
            conv1_w = self.conv[0].weight.half()
            conv2_w = self.conv[2].weight.half()
            conv3_w = self.conv[4].weight.half()
            conv4_w = self.conv[6].weight.half()
            conv5_w = self.cls_logits.weight.half()
            conv1_b = self.conv[0].bias.reshape(1, -1, 1, 1).half()
            conv2_b = self.conv[2].bias.reshape(1, -1, 1, 1).half()
            conv3_b = self.conv[4].bias.reshape(1, -1, 1, 1).half()
            conv4_b = self.conv[6].bias.reshape(1, -1, 1, 1).half()
            conv5_b = self.cls_logits.bias.reshape(1, -1, 1, 1).half()

        for features in x:
            if not self.fusion:
                cls_logits = self.conv(features)
                cls_logits = self.cls_logits(cls_logits)
            else:
                cls_logits = ConvBiasReLU(features, conv1_w, conv1_b, 1, 1)
                cls_logits = ConvBiasReLU(cls_logits, conv2_w, conv2_b, 1, 1)
                cls_logits = ConvBiasReLU(cls_logits, conv3_w, conv3_b, 1, 1)
                cls_logits = ConvBiasReLU(cls_logits, conv4_w, conv4_b, 1, 1)
                cls_logits = ConvBias(cls_logits, conv5_w, conv5_b, 1, 1)

                # cloning grad in backprop to make it contiguous for fusion code
                cls_logits = GradClone(cls_logits)

            # Permute classification output from (N, A * K, H, W) to (N, HWA, K).
            N, _, H, W = cls_logits.shape
            cls_logits = cls_logits.view(N, -1, self.num_classes, H, W)
            cls_logits = cls_logits.permute(0, 3, 4, 1, 2)
            cls_logits = cls_logits.reshape(N, -1, self.num_classes)  # Size=(N, HWA, 4)

            all_cls_logits.append(cls_logits)

        return torch.cat(all_cls_logits, dim=1)


class RetinaNetRegressionHead(nn.Module):
    """
    A regression head for use in RetinaNet.

    Args:
        in_channels (int): number of channels of the input feature
        num_anchors (int): number of anchors to be predicted
    """
    __annotations__ = {
        'box_coder': BoxCoder,
    }

    def __init__(self, in_channels, num_anchors, fusion=False, module_name=""):
        super().__init__()

        conv = []
        for _ in range(4):
            conv.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1))
            conv.append(nn.ReLU())
        self.conv = nn.Sequential(*conv)

        self.bbox_reg = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=3, stride=1, padding=1)
        mllogger.event(key=WEIGHTS_INITIALIZATION, metadata={"tensor": f"{module_name}.bbox_reg.weight"})
        torch.nn.init.normal_(self.bbox_reg.weight, std=0.01)
        mllogger.event(key=WEIGHTS_INITIALIZATION, metadata={"tensor": f"{module_name}.bbox_reg.bias"})
        torch.nn.init.zeros_(self.bbox_reg.bias)

        for name, layer in self.conv.named_children():
            if isinstance(layer, nn.Conv2d):
                mllogger.event(key=WEIGHTS_INITIALIZATION, metadata={"tensor": f"{module_name}.conv.{name}.weight"})
                torch.nn.init.normal_(layer.weight, std=0.01)
                mllogger.event(key=WEIGHTS_INITIALIZATION, metadata={"tensor": f"{module_name}.conv.{name}.bias"})
                torch.nn.init.zeros_(layer.bias)

        self.box_coder = BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))

        self.fusion = fusion

    # --- original implementation ---
    def compute_loss(self, targets, head_outputs, anchors, matched_idxs):
        # type: (List[Dict[str, Tensor]], Dict[str, Tensor], List[Tensor], List[Tensor]) -> Tensor
        losses = []

        bbox_regression = head_outputs['bbox_regression']

        for boxes_per_image, bbox_regression_per_image, anchors_per_image, matched_idxs_per_image in \
                zip(targets['boxes'], bbox_regression, anchors, matched_idxs):
            # determine only the foreground indices, ignore the rest
            foreground_idxs_per_image = torch.where(matched_idxs_per_image >= 0)[0]
            num_foreground = foreground_idxs_per_image.numel()

            # select only the foreground boxes
            matched_gt_boxes_per_image = boxes_per_image[matched_idxs_per_image[foreground_idxs_per_image]]
            bbox_regression_per_image = bbox_regression_per_image[foreground_idxs_per_image, :]
            anchors_per_image = anchors_per_image[foreground_idxs_per_image, :]

            # compute the regression targets
            target_regression = self.box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image)

            # compute the loss
            losses.append(torch.nn.functional.l1_loss(
                bbox_regression_per_image,
                target_regression,
                reduction='sum'
            ) / max(1, num_foreground))

        # doesn't matter which targets['?'] is taken, this represent the batch size
        return _sum(losses) / len(targets['boxes'])

    def compute_loss_prologue(self, target_boxes, matched_idxs, anchors):
        foreground_idxs_mask, num_foreground_, target_regression_ = [], [], []

        for boxes_per_image, anchors_per_image, matched_idxs_per_image in zip(target_boxes, anchors, matched_idxs):
            foreground_idxs_per_image = torch.where(matched_idxs_per_image >= 0)[0]
            num_foreground = foreground_idxs_per_image.numel()

            foreground_idxs_mask.append(foreground_idxs_per_image)
            num_foreground_.append(num_foreground)

            # select only the foreground boxes
            matched_gt_boxes_per_image = boxes_per_image[matched_idxs_per_image[foreground_idxs_per_image]]
            anchors_per_image = anchors_per_image[foreground_idxs_per_image, :]

            # compute the regression targets
            target_regression = self.box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image)

            target_regression_.append(target_regression)

        return target_regression_, num_foreground_, foreground_idxs_mask

    def compute_loss_core(self, bbox_regression, target_regression, foreground_idxs, num_foreground):
        losses = []

        for bbox_regression_i, target_regression_i, foreground_idxs_i, num_foreground_i in \
                zip(bbox_regression, target_regression, foreground_idxs, num_foreground):

            bbox_regression_i_ = bbox_regression_i[foreground_idxs_i, :]

            losses.append(torch.nn.functional.l1_loss(bbox_regression_i_, target_regression_i, reduction='sum')
                          / max(1, num_foreground_i))

        return _sum(losses) / num_foreground.size(0)

    def compute_loss_prologue_padded(self, target_boxes, matched_idxs, anchors):
        # notice the number of boxes is padded in this implementation
        # make sure we do not trim bboxes
        # assert (matched_idxs.max() < max_boxes)

        foreground_idxs_mask = matched_idxs >= 0
        num_foreground_ = foreground_idxs_mask.sum(dim=1)
        # clamping to avoid -2, -1
        matched_idxs_clamped = torch.clamp(matched_idxs, min=0)

        # check that the premade vector size is relevant to the current batch size
        # not sure what will happen if it is not
        assert(utils.ScratchPad.batch_size_vector.size(0) == len(target_boxes))

        matched_gt_boxes_ = target_boxes[utils.ScratchPad.batch_size_vector, matched_idxs_clamped]
        target_regression_ = self.box_coder.encode_batch(matched_gt_boxes_,
                                                         torch.stack(anchors)) * foreground_idxs_mask[:, :, None]

        return target_regression_, num_foreground_, foreground_idxs_mask

    def compute_loss_core_padded(self, bbox_regression, target_regression, foreground_idxs, num_foreground):
        bbox_regression_masked = bbox_regression * foreground_idxs[:, :, None]
        losses = torch.norm(bbox_regression_masked - target_regression, 1, dim=[1, 2]) / \
                 torch.max(torch.ones_like(num_foreground), num_foreground)

        # The denominator is just the batch size
        return _sum(losses) / num_foreground.size(0)

    def forward(self, x):
        # type: (List[Tensor]) -> Tensor
        all_bbox_regression = []

        # since weights are shared, we can cast weights and biases only one time per iteration
        if self.fusion:
            conv1_w = self.conv[0].weight.half()
            conv2_w = self.conv[2].weight.half()
            conv3_w = self.conv[4].weight.half()
            conv4_w = self.conv[6].weight.half()
            conv5_w = self.bbox_reg.weight.half()
            conv1_b = self.conv[0].bias.reshape(1, -1, 1, 1).half()
            conv2_b = self.conv[2].bias.reshape(1, -1, 1, 1).half()
            conv3_b = self.conv[4].bias.reshape(1, -1, 1, 1).half()
            conv4_b = self.conv[6].bias.reshape(1, -1, 1, 1).half()
            conv5_b = self.bbox_reg.bias.reshape(1, -1, 1, 1).half()

        for features in x:
            if not self.fusion:
                bbox_regression = self.conv(features)
                bbox_regression = self.bbox_reg(bbox_regression)
            else:
                bbox_regression = ConvBiasReLU(features, conv1_w, conv1_b, 1, 1)
                bbox_regression = ConvBiasReLU(bbox_regression, conv2_w, conv2_b, 1, 1)
                bbox_regression = ConvBiasReLU(bbox_regression, conv3_w, conv3_b, 1, 1)
                bbox_regression = ConvBiasReLU(bbox_regression, conv4_w, conv4_b, 1, 1)
                bbox_regression = ConvBias(bbox_regression, conv5_w, conv5_b, 1, 1)

                # cloning grad in backprop to make it contiguous for fusion code
                bbox_regression = GradClone(bbox_regression)

            # Permute bbox regression output from (N, 4 * A, H, W) to (N, HWA, 4).
            N, _, H, W = bbox_regression.shape
            bbox_regression = bbox_regression.view(N, -1, 4, H, W)
            bbox_regression = bbox_regression.permute(0, 3, 4, 1, 2)
            bbox_regression = bbox_regression.reshape(N, -1, 4)  # Size=(N, HWA, 4)

            all_bbox_regression.append(bbox_regression)

        return torch.cat(all_bbox_regression, dim=1)


class RetinaNet(nn.Module):
    """
    Implements RetinaNet.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows:
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the predicted labels for each image
        - scores (Tensor[N]): the scores for each prediction

    Args:
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain an out_channels attribute, which indicates the number of output
            channels that each feature map has (and it should be the same for all feature maps).
            The backbone should return a single Tensor or an OrderedDict[Tensor].
        num_classes (int): number of output classes of the model (including the background).
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        head (nn.Module): Module run on top of the feature pyramid.
            Defaults to a module containing a classification and regression module.
        score_thresh (float): Score threshold used for postprocessing the detections.
        nms_thresh (float): NMS threshold used for postprocessing the detections.
        detections_per_img (int): Number of best detections to keep after NMS.
        fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training.
        bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training.
        topk_candidates (int): Number of best detections to keep before NMS.

    Example:

        >>> import torch
        >>> import torchvision
        >>> from torchvision.models.detection import RetinaNet
        >>> from torchvision.models.detection.anchor_utils import AnchorGenerator
        >>> # load a pre-trained model for classification and return
        >>> # only the features
        >>> backbone = torchvision.models.mobilenet_v2(pretrained=True).features
        >>> # RetinaNet needs to know the number of
        >>> # output channels in a backbone. For mobilenet_v2, it's 1280
        >>> # so we need to add it here
        >>> backbone.out_channels = 1280
        >>>
        >>> # let's make the network generate 5 x 3 anchors per spatial
        >>> # location, with 5 different sizes and 3 different aspect
        >>> # ratios. We have a Tuple[Tuple[int]] because each feature
        >>> # map could potentially have different sizes and
        >>> # aspect ratios
        >>> anchor_generator = AnchorGenerator(
        >>>     sizes=((32, 64, 128, 256, 512),),
        >>>     aspect_ratios=((0.5, 1.0, 2.0),)
        >>> )
        >>>
        >>> # put the pieces together inside a RetinaNet model
        >>> model = RetinaNet(backbone,
        >>>                   num_classes=2,
        >>>                   anchor_generator=anchor_generator)
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
    """
    __annotations__ = {
        'box_coder': BoxCoder,
        'proposal_matcher': Matcher,
    }

    def __init__(self, backbone, num_classes, data_layout='channels_first', head_fusion=False,
                 # transform parameters
                 image_size=None, image_mean=None, image_std=None,
                 # Anchor parameters
                 anchor_generator=None, head=None,
                 # Detection parameters
                 proposal_matcher=None,
                 score_thresh=0.05,
                 nms_thresh=0.5,
                 detections_per_img=300,
                 fg_iou_thresh=0.5, bg_iou_thresh=0.4,
                 topk_candidates=1000):
        super().__init__()

        if not hasattr(backbone, "out_channels"):
            raise ValueError(
                "backbone should contain an attribute out_channels "
                "specifying the number of output channels (assumed to be the "
                "same for all the levels)")
        self.backbone = backbone
        self.data_layout = data_layout

        assert isinstance(anchor_generator, (AnchorGenerator, type(None)))

        if anchor_generator is None:
            anchor_sizes = tuple((x, int(x * 2 ** (1.0 / 3)), int(x * 2 ** (2.0 / 3))) for x in [32, 64, 128, 256, 512])
            aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
            anchor_generator = AnchorGenerator(
                anchor_sizes, aspect_ratios
            )
        self.anchor_generator = anchor_generator
        self.anchors = None

        if head is None:
            head = RetinaNetHead(backbone.out_channels, anchor_generator.num_anchors_per_location()[0], num_classes,
                                 fusion=head_fusion)
        self.head = head

        if proposal_matcher is None:
            proposal_matcher = Matcher(
                fg_iou_thresh,
                bg_iou_thresh,
                allow_low_quality_matches=True,
            )
        else:
            warnings.warn('proposal_matcher_batch is statically assigned to MatcherBatch')
        self.proposal_matcher = proposal_matcher
        self.proposal_matcher_batch = MatcherBatch(fg_iou_thresh, bg_iou_thresh, allow_low_quality_matches=True)

        self.score_thresh = score_thresh
        self.nms_thresh = nms_thresh
        self.detections_per_img = detections_per_img
        self.topk_candidates = topk_candidates

        self.box_coder = BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))
        self.anchors = None

        if image_size is None:
            image_size = [800, 800]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]

        self.transform = GeneralizedRCNNTransform(image_size=image_size,
                                                  image_mean=image_mean, image_std=image_std)

        # used only on torchscript mode
        self._has_warned = False

    @torch.jit.unused
    def eager_outputs(self, losses, detections):
        # type: (Dict[str, Tensor], List[Dict[str, Tensor]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]
        if self.training:
            return losses

        return detections

    # --- original code ---
    def get_matched_idxs(self, target_boxes):
        matched_idxs = []
        for anchors_per_image, boxes_per_image in zip(self.anchors, target_boxes):
            if boxes_per_image.numel() == 0:
                matched_idxs.append(torch.full((anchors_per_image.size(0),), -1, dtype=torch.int64,
                                               device=anchors_per_image.device))
                continue

            match_quality_matrix = box_iou(boxes_per_image, anchors_per_image)
            matched_idxs.append(self.proposal_matcher(match_quality_matrix))

        return torch.stack(matched_idxs)

    # --- parallel implementation ---
    # this implementation is not in use, since (1) it is done as part of DALI pipe; and (2) because of the
    # significant padding to target_boxes, box_iou has significant computational overheads
    def get_matched_idxs_padded(self, target_boxes, batch_sz, max_boxes):
        target_boxes_ = target_boxes.reshape(-1, 4)

        match_quality_matrix = box_iou(target_boxes_, self.anchors[0])
        match_quality_matrix = match_quality_matrix.reshape([batch_sz, max_boxes, -1])
        matched_idxs = self.proposal_matcher_batch(match_quality_matrix)

        return matched_idxs

    # --- original code ---
    def compute_loss(self, targets, head_outputs):
        # type: (List[Dict[str, Tensor]], Dict[str, Tensor]) -> Dict[str, Tensor]

        matched_idxs = []
        for anchors_per_image, boxes_per_image in zip(self.anchors, targets['boxes']):

            # Uncomment to support trim of targets according to MAX_BOXES, so can be used a reference
            # boxes_per_image = boxes_per_image[0:MAX_BOXES, :]

            if boxes_per_image.numel() == 0:
                matched_idxs.append(torch.full((anchors_per_image.size(0),), -1, dtype=torch.int64,
                                               device=anchors_per_image.device))
                continue

            match_quality_matrix = box_iou(boxes_per_image, anchors_per_image)
            matched_idxs.append(self.proposal_matcher(match_quality_matrix))

        return self.head.compute_loss(targets, head_outputs, self.anchors, matched_idxs)

    def update_anchors(self, images, device, features=None, dtype=torch.float16, force=False):
        # TODO: should perhaps create once in the relevant constructor
        if self.anchors is None or force is True:
            if features is None:
                # forward_opt uses the default grid size (100, 50, 25, 13, 7)
                # images is the image tensor shape
                self.anchors = self.anchor_generator.forward_opt(image_shape=images, device=device, dtype=dtype)
            else:
                # using the old method if the features are passed
                self.anchors = self.anchor_generator.forward(images, features)

    def eval_postprocess_detections(self, head_outputs, anchors, image_shapes):
        # type: (Dict[str, List[Tensor]], List[List[Tensor]], List[Tuple[int, int]]) -> List[Dict[str, Tensor]]
        class_logits = head_outputs['cls_logits']
        box_regression = head_outputs['bbox_regression']

        num_images = len(image_shapes)

        detections: List[Dict[str, Tensor]] = []

        for index in range(num_images):
            box_regression_per_image = [br[index] for br in box_regression]
            logits_per_image = [cl[index] for cl in class_logits]
            # anchors[i] = anchors[j] for every i!=j
            anchors_per_image, image_shape = anchors[0], image_shapes[index]

            image_boxes = []
            image_scores = []
            image_labels = []

            for box_regression_per_level, logits_per_level, anchors_per_level in \
                    zip(box_regression_per_image, logits_per_image, anchors_per_image):
                num_classes = logits_per_level.shape[-1]

                # remove low scoring boxes
                scores_per_level = torch.sigmoid(logits_per_level).flatten()
                keep_idxs = scores_per_level > self.score_thresh
                scores_per_level = scores_per_level[keep_idxs]
                topk_idxs = torch.where(keep_idxs)[0]

                # keep only topk scoring predictions
                num_topk = min(self.topk_candidates, topk_idxs.size(0))
                scores_per_level, idxs = scores_per_level.topk(num_topk)
                topk_idxs = topk_idxs[idxs]

                anchor_idxs = torch.div(topk_idxs, num_classes, rounding_mode='floor')
                labels_per_level = topk_idxs % num_classes

                boxes_per_level = self.box_coder.decode_single(box_regression_per_level[anchor_idxs],
                                                               anchors_per_level[anchor_idxs])
                boxes_per_level = clip_boxes_to_image(boxes_per_level, image_shape)

                image_boxes.append(boxes_per_level)
                image_scores.append(scores_per_level)
                image_labels.append(labels_per_level)

            image_boxes = torch.cat(image_boxes, dim=0)
            image_scores = torch.cat(image_scores, dim=0)
            image_labels = torch.cat(image_labels, dim=0)

            # non-maximum suppression
            keep = batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh)
            keep = keep[:self.detections_per_img]

            detections.append({
                'boxes': image_boxes[keep],
                'scores': image_scores[keep],
                'labels': image_labels[keep],
            })

        return detections

    def eval_postprocess(self, images, features, targets, head_outputs, targets_dict=False):
        # recover level sizes
        num_anchors_per_level = [x.size(2) * x.size(3) for x in features]
        HW = 0
        for v in num_anchors_per_level:
            HW += v
        HWA = head_outputs['cls_logits'].size(1)
        A = HWA // HW
        num_anchors_per_level = [hw * A for hw in num_anchors_per_level]

        # split outputs per level
        split_head_outputs: Dict[str, List[Tensor]] = {}
        for k in head_outputs:
            split_head_outputs[k] = list(head_outputs[k].split(num_anchors_per_level, dim=1))
        split_anchors = [list(a.split(num_anchors_per_level)) for a in self.anchors]

        # get the original image sizes
        original_image_sizes = []
        if targets_dict:
            original_image_sizes = targets['original_image_size']
        else:
            for target in targets:
                original_image_sizes.append(target['original_image_size'])

        # compute the detections
        detections = self.eval_postprocess_detections(split_head_outputs, split_anchors,
                                                      [(image.size(1), image.size(2)) for image in images])
        detections = self.transform.postprocess(detections,
                                                [(image.size(1), image.size(2)) for image in images],
                                                original_image_sizes)

        return detections

    def validate_input(self, images, targets):
        if self.training and targets is None:
            raise ValueError("In training mode, targets should be passed")

        if self.training:
            assert targets is not None
            for boxes in targets["boxes"]:
                if isinstance(boxes, torch.Tensor):
                    if len(boxes.shape) != 2 or boxes.shape[-1] != 4:
                        raise ValueError("Expected target boxes to be a tensor"
                                         "of shape [N, 4], got {:}.".format(
                                             boxes.shape))
                else:
                    raise ValueError("Expected target boxes to be of type "
                                     "Tensor, got {:}.".format(type(boxes)))

        # check for degenerate boxes
        if targets is not None:
            for target_idx, boxes in enumerate(targets["boxes"]):
                degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
                if degenerate_boxes.any():
                    # print the first degenerate box
                    bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
                    degen_bb: List[float] = boxes[bb_idx].tolist()
                    raise ValueError("All bounding boxes should have positive height and width."
                                     " Found invalid box {} for target at index {}."
                                     .format(degen_bb, target_idx))

    def forward(self, images: Tensor) -> Tuple[Tensor]:
        """
        Args:
            images (Tensor): images to be processed

        Returns:
            result (Tuple[Tensor]): the output from the model; [0]: pyramid 100x100, [1] 50x50, [2] 25x25,
            [3] 13x13, [4] 7x7, [5] cls head, [6] bbox head
        """

        # get the features from the backbone
        features = self.backbone(images)
        if isinstance(features, torch.Tensor):
            features = OrderedDict([('0', features)])

        features = list(features.values())

        # compute the retinanet heads outputs using the features
        head_outputs = self.head(features)

        features.extend(head_outputs)
        out = tuple(features)

        return out


model_urls = {
    'retinanet_resnet50_fpn_coco':
        'https://download.pytorch.org/models/retinanet_resnet50_fpn_coco-eeacb38b.pth',
}


def retinanet_resnet50_fpn(num_classes, image_size, data_layout='channels_first',
                           pretrained=False, progress=True, pretrained_backbone=True,
                           trainable_backbone_layers=None):
    """
    Constructs a RetinaNet model with a ResNet-50-FPN backbone.

    Reference: `"Focal Loss for Dense Object Detection" <https://arxiv.org/abs/1708.02002>`_.

    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:

        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
    follows, where ``N`` is the number of detections:

        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (``Int64Tensor[N]``): the predicted labels for each detection
        - scores (``Tensor[N]``): the scores of each detection

    For more details on the output, you may refer to :ref:`instance_seg_output`.

    Example::

        >>> model = torchvision.models.detection.retinanet_resnet50_fpn(pretrained=True)
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
        num_classes (int): number of output classes of the model (including the background)
        image_size (list(int, int)): Image size
        data_layout (str): model data layout (channels_first or channels_last)
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
    """
    trainable_backbone_layers = _validate_trainable_layers(
        pretrained or pretrained_backbone, trainable_backbone_layers, 5, 3)

    if pretrained:
        # no need to download the backbone if pretrained is set
        pretrained_backbone = False
    # skip P2 because it generates too many anchors (according to their paper)
    backbone = resnet_fpn_backbone('resnet50', pretrained_backbone, returned_layers=[2, 3, 4],
                                   extra_blocks=LastLevelP6P7(256, 256, module_name="module.backbone.fpn.extra_blocks"),
                                   trainable_layers=trainable_backbone_layers)
    model = RetinaNet(backbone=backbone, num_classes=num_classes, data_layout=data_layout, image_size=image_size)
    if pretrained:
        state_dict = load_state_dict_from_url(model_urls['retinanet_resnet50_fpn_coco'],
                                              progress=progress)
        model.load_state_dict(state_dict)
        overwrite_eps(model, 0.0)
    return model


def retinanet_resnext50_32x4d_fpn(num_classes, image_size, data_layout='channels_first',
                                  pretrained=False, progress=True, pretrained_backbone=True,
                                  trainable_backbone_layers=None, jit=False, head_fusion=False, frozen_bn_opt=False):
    """
    Constructs a RetinaNet model with a resnext50_32x4d-FPN backbone.

    Reference: `"Focal Loss for Dense Object Detection" <https://arxiv.org/abs/1708.02002>`_.

    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:

        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
    follows, where ``N`` is the number of detections:

        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (``Int64Tensor[N]``): the predicted labels for each detection
        - scores (``Tensor[N]``): the scores of each detection

    For more details on the output, you may refer to :ref:`instance_seg_output`.

    Example::

        >>> model = torchvision.models.detection.retinanet_resnext50_32x4d_fpn(pretrained=True)
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
        num_classes (int): number of output classes of the model (including the background)
        image_size (list(int, int)): Image size
        data_layout (str): model data layout (channels_first or channels_last)
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
    """
    trainable_backbone_layers = _validate_trainable_layers(
        pretrained or pretrained_backbone, trainable_backbone_layers, 5, 3)

    if pretrained:
        # no need to download the backbone if pretrained is set
        pretrained_backbone = False
    # skip P2 because it generates too many anchors (according to their paper)
    backbone = resnet_fpn_backbone('resnext50_32x4d', pretrained_backbone, returned_layers=[2, 3, 4],
                                   extra_blocks=LastLevelP6P7(256, 256, module_name="module.backbone.fpn.extra_blocks"),
                                   trainable_layers=trainable_backbone_layers,
                                   norm_layer=FrozenBatchNorm2d if frozen_bn_opt else misc_nn_ops.FrozenBatchNorm2d,
                                   jit=jit)
    model = RetinaNet(backbone=backbone, num_classes=num_classes, data_layout=data_layout, image_size=image_size,
                      head_fusion=head_fusion)
    if pretrained:
        raise ValueError("Torchvision doesn't have a pretrained retinanet_resnext50_32x4d_fpn model")

    return model


def retinanet_resnet101_fpn(num_classes, image_size, data_layout='channels_first',
                            pretrained=False, progress=True, pretrained_backbone=True,
                            trainable_backbone_layers=None):
    """
    Constructs a RetinaNet model with a ResNet-101-FPN backbone.

    Reference: `"Focal Loss for Dense Object Detection" <https://arxiv.org/abs/1708.02002>`_.

    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:

        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
    follows, where ``N`` is the number of detections:

        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (``Int64Tensor[N]``): the predicted labels for each detection
        - scores (``Tensor[N]``): the scores of each detection

    For more details on the output, you may refer to :ref:`instance_seg_output`.

    Example::

        >>> model = torchvision.models.detection.retinanet_resnet101_fpn(pretrained=True)
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
        num_classes (int): number of output classes of the model (including the background)
        image_size (list(int, int)): Image size
        data_layout (str): model data layout (channels_first or channels_last)
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
    """
    trainable_backbone_layers = _validate_trainable_layers(
        pretrained or pretrained_backbone, trainable_backbone_layers, 5, 3)

    if pretrained:
        # no need to download the backbone if pretrained is set
        pretrained_backbone = False
    # skip P2 because it generates too many anchors (according to their paper)
    backbone = resnet_fpn_backbone('resnet101', pretrained_backbone, returned_layers=[2, 3, 4],
                                   extra_blocks=LastLevelP6P7(256, 256, module_name="module.backbone.fpn.extra_blocks"),
                                   trainable_layers=trainable_backbone_layers)
    model = RetinaNet(backbone=backbone, num_classes=num_classes, data_layout=data_layout, image_size=image_size)
    if pretrained:
        raise ValueError("Torchvision doesn't have a pretrained retinanet_resnet101_fpn model")

    return model


def retinanet_resnext101_32x8d_fpn(num_classes, image_size, data_layout='channels_first',
                                   pretrained=False, progress=True, pretrained_backbone=True,
                                   trainable_backbone_layers=None):
    """
    Constructs a RetinaNet model with a resnext101_32x8d-FPN backbone.

    Reference: `"Focal Loss for Dense Object Detection" <https://arxiv.org/abs/1708.02002>`_.

    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:

        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
    follows, where ``N`` is the number of detections:

        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (``Int64Tensor[N]``): the predicted labels for each detection
        - scores (``Tensor[N]``): the scores of each detection

    For more details on the output, you may refer to :ref:`instance_seg_output`.

    Example::

        >>> model = torchvision.models.detection.retinanet_resnext101_32x8d_fpn(pretrained=True)
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
        num_classes (int): number of output classes of the model (including the background)
        image_size (list(int, int)): Image size
        data_layout (str): model data layout (channels_first or channels_last)
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
    """
    trainable_backbone_layers = _validate_trainable_layers(
        pretrained or pretrained_backbone, trainable_backbone_layers, 5, 3)

    if pretrained:
        # no need to download the backbone if pretrained is set
        pretrained_backbone = False
    # skip P2 because it generates too many anchors (according to their paper)
    backbone = resnet_fpn_backbone('resnext101_32x8d', pretrained_backbone, returned_layers=[2, 3, 4],
                                   extra_blocks=LastLevelP6P7(256, 256, module_name="module.backbone.fpn.extra_blocks"),
                                   trainable_layers=trainable_backbone_layers)
    model = RetinaNet(backbone=backbone, num_classes=num_classes, data_layout=data_layout, image_size=image_size)
    if pretrained:
        raise ValueError("Torchvision doesn't have a pretrained retinanet_resnext101_32x8d_fpn model")

    return model


def retinanet_from_backbone(backbone,
                            num_classes=91, data_layout='channels_first', image_size=None,
                            pretrained=False, progress=True, pretrained_backbone=True,
                            trainable_backbone_layers=None, jit=False, head_fusion=False, frozen_bn_opt=False):
    if image_size is None:
        image_size = [800, 800]

    if backbone == "resnet50":
        return retinanet_resnet50_fpn(num_classes=num_classes, data_layout=data_layout, image_size=image_size,
                                      pretrained=pretrained, progress=progress,
                                      pretrained_backbone=pretrained_backbone,
                                      trainable_backbone_layers=trainable_backbone_layers)
    elif backbone == "resnext50_32x4d":
        return retinanet_resnext50_32x4d_fpn(num_classes=num_classes, data_layout=data_layout, image_size=image_size,
                                             pretrained=pretrained, progress=progress,
                                             pretrained_backbone=pretrained_backbone,
                                             trainable_backbone_layers=trainable_backbone_layers, jit=jit,
                                             head_fusion=head_fusion, frozen_bn_opt=frozen_bn_opt)
    elif backbone == "resnet101":
        return retinanet_resnet101_fpn(num_classes=num_classes, data_layout=data_layout, image_size=image_size,
                                       pretrained=pretrained, progress=progress,
                                       pretrained_backbone=pretrained_backbone,
                                       trainable_backbone_layers=trainable_backbone_layers)
    elif backbone == "resnext101_32x8d":
        return retinanet_resnext101_32x8d_fpn(num_classes=num_classes, data_layout=data_layout, image_size=image_size,
                                              pretrained=pretrained, progress=progress,
                                              pretrained_backbone=pretrained_backbone,
                                              trainable_backbone_layers=trainable_backbone_layers)
    else:
        raise ValueError(f"Unknown backbone {backbone}")