engine.py 21.4 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#           http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import sys
import time
import torch
import torch.distributed as dist

from mlperf_logger import mllogger
from mlperf_logging.mllog.constants import (EPOCH_START, EPOCH_STOP, EVAL_START, EVAL_STOP, EVAL_ACCURACY)

import utils
from mlperf_common.scaleoutbridge import ScaleoutBridgeBase as SBridge

from async_executor import async_executor


def preprocessing(images, targets, model_ptr, data_layout):
    # TODO: can be parallelized? should we use DALI? there must be a better way
    target_per_image = []
    for i in range(len(images)):
        # create List[Dict] mapping for targets, used only for preprocessing.
        # only 'boxes', and perhaps 'keypoints', are used for preprocessing.
        dict_ = {'boxes': targets['boxes'][i]}
        assert ('keypoints' not in targets)
        target_per_image.append(dict_)

    images, targets_ = model_ptr.transform(images, target_per_image)

    # List[Dict] -> Dict[List]
    for i in range(len(targets_)):
        targets['boxes'][i] = targets_[i]['boxes']

    images = images.tensors
    if data_layout == 'channels_last':
        images = images.to(memory_format=torch.channels_last)

    return images, targets


def init_scratchpad(images, targets, batch_size, num_classes, amp, fused_focal_loss,
                    max_boxes, cls_head_padded, reg_head_padded, cuda_graphs):
    device = targets['labels'][0].device

    # TODO: should we skip validation in deployment?
    # model_ptr.validate_input(images, targets)

    # one-time init
    if utils.ScratchPad.target_labels_padded is None and cls_head_padded:
        utils.ScratchPad.target_labels_padded = torch.zeros([batch_size, max_boxes + 1],
                                                            device=device, dtype=torch.int64)
        utils.ScratchPad.target_labels_padded[:, -1] = num_classes if not fused_focal_loss else -1
    if utils.ScratchPad.target_boxes_padded is None and reg_head_padded:
        utils.ScratchPad.target_boxes_padded = torch.zeros([batch_size, max_boxes, 4], device=device)
    if utils.ScratchPad.target_n is None and (cls_head_padded or reg_head_padded):
        utils.ScratchPad.target_n = torch.zeros([batch_size, 1], device=device, dtype=torch.int64)
    if utils.ScratchPad.target_matched_idxs is None and cuda_graphs:
        utils.ScratchPad.target_matched_idxs = torch.zeros_like(targets['matched_idxs'], device=device)

    # these allocations are used to avoid allocations per iteration
    if utils.ScratchPad.gt_classes_target is None:
        if not fused_focal_loss:
            utils.ScratchPad.gt_classes_target = \
                torch.zeros(torch.Size([batch_size, 120087, num_classes + (1 if cls_head_padded else 0)]),
                            dtype=torch.float32 if not amp else torch.float16).to(device)
        else:
            utils.ScratchPad.gt_classes_target = \
                torch.zeros(torch.Size([batch_size, 120087]), device=device, dtype=torch.int64)
    if utils.ScratchPad.batch_size_vector is None:
        utils.ScratchPad.batch_size_vector = torch.arange(len(targets['boxes'])).unsqueeze(1).cuda()

    # data init
    if cls_head_padded:
        utils.ScratchPad.target_labels_padded[:, :-1].fill_(0)
    if reg_head_padded:
        utils.ScratchPad.target_boxes_padded.fill_(0)
    if cuda_graphs:
        utils.ScratchPad.target_matched_idxs.copy_(targets['matched_idxs'])

    for i in range(images.size(0)):
        # debug
        # assert targets['labels'][i].size(0) < max_boxes
        labels_n = targets['labels'][i].size(0)
        if cls_head_padded:
            utils.ScratchPad.target_labels_padded[i][:labels_n] = targets['labels'][i][:labels_n]

            # debug: if args.apex_focal_loss than the -1 pos remains num_classes and not overridden
            # assert ((not fused_focal_loss and (utils.ScratchPad.target_labels_padded[:, -1] == num_classes).all())
            #        or fused_focal_loss)
        if reg_head_padded:
            utils.ScratchPad.target_boxes_padded[i][:labels_n] = targets['boxes'][i][:labels_n]
        if cls_head_padded or reg_head_padded:
            utils.ScratchPad.target_n[i] = labels_n

    utils.ScratchPad.gt_classes_target.fill_(0 if not fused_focal_loss else -1)


def compute_matched_idxs(targets_boxes, model_ptr):
    matched_idxs = model_ptr.get_matched_idxs(targets_boxes)

    return matched_idxs


def loss_preprocessing(targets_boxes, targets_labels, matched_idxs, model_ptr, fused_focal_loss, max_boxes,
                       cls_head_padded, reg_head_padded):
    # classification loss prologues
    if cls_head_padded:
        gt_classes_target, num_foreground, valid_idxs = \
            model_ptr.head.classification_head.compute_loss_prologue_padded(targets_labels,
                                                                            matched_idxs,
                                                                            one_hot=(not fused_focal_loss),
                                                                            max_boxes=max_boxes)
    else:
        gt_classes_target, num_foreground, valid_idxs = \
            model_ptr.head.classification_head.compute_loss_prologue(targets_labels, matched_idxs,
                                                                     one_hot=(not fused_focal_loss))

    # regression loss prologues
    if reg_head_padded:
        target_regression, _, foreground_idxs_mask = \
            model_ptr.head.regression_head.compute_loss_prologue_padded(targets_boxes, matched_idxs, model_ptr.anchors)
    else:
        target_regression, _, foreground_idxs_mask = \
            model_ptr.head.regression_head.compute_loss_prologue(targets_boxes, matched_idxs, model_ptr.anchors)

    return gt_classes_target, target_regression, num_foreground, valid_idxs, foreground_idxs_mask


def compute_loss(model_ptr, cls_logits, bbox_regression, valid_idxs, gt_classes_target, num_foreground,
                 target_regression, foreground_idxs_mask, fused_focal_loss, reg_head_padded):

    cls_loss = model_ptr.head.classification_head.compute_loss_core(cls_logits, gt_classes_target,
                                                                    valid_idxs, num_foreground,
                                                                    fused_focal_loss=fused_focal_loss)

    if reg_head_padded:
        reg_loss = model_ptr.head.regression_head.compute_loss_core_padded(bbox_regression, target_regression,
                                                                           foreground_idxs_mask, num_foreground)
    else:
        reg_loss = model_ptr.head.regression_head.compute_loss_core(bbox_regression, target_regression,
                                                                    foreground_idxs_mask, num_foreground)

    return cls_loss, reg_loss


def train_one_epoch(model, optimizer, scaler, data_loader, device, epoch, train_group, args,
                    graphed_model=None, static_input=None, static_loss=None, static_prologues_out=None,
                    sbridge=SBridge()):
    mllogger.start(key=EPOCH_START, value=epoch, metadata={"epoch_num": epoch}, sync=True, sync_group=train_group)
    sbridge.start_epoch_prof()
    model.train()
    metric_logger = utils.MetricLogger(delimiter="  ")
    if not args.skip_metric_loss:
        metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    header = 'Epoch: [{}]'.format(epoch)

    # direct pointer to the model
    model_ptr = model.module if args.distributed else model

    lr_scheduler = None
    if epoch < args.warmup_epochs:
        # Convert epochs to iterations
        # we want to control warmup at the epoch level, but update lr every iteration
        start_iter = epoch*len(data_loader)
        warmup_iters = args.warmup_epochs*len(data_loader)
        lr_scheduler = utils.warmup_lr_scheduler(optimizer, start_iter, warmup_iters, args.warmup_factor)

    accuracy = None
    for images, targets in metric_logger.log_every(data_loader, args.print_freq, header):
        sbridge.start_prof(SBridge.ITER_TIME)
        if args.syn_dataset:
            images = list(image.to(device, non_blocking=True) for image in images)
            images = torch.stack(images)

            targets = {k: [dic[k].to(device, non_blocking=True) for dic in targets] for k in targets[0]}
            targets['matched_idxs'] = torch.stack(targets['matched_idxs'])
        else:
            # DALI iterator provides data as needed
            if not args.dali:
                images = list(image.to(device, non_blocking=True) for image in images)
                # arrange "targets" as a Dict[List], instead of a List[Dict], so later it will be easier to use targets
                # data in parallel (e.g., to get the entire batch "boxes", one can just use targets['boxes']).
                # TODO: there might be some unused fields in the targets tensor, so perhaps can avoid some transfers
                targets = {k: [dic[k].to(device, non_blocking=True) for dic in targets] for k in targets[0]}

                # preprocessing
                images, targets = preprocessing(images, targets, model_ptr, args.data_layout)

            # DALI can compute matched_idxs and put it in targets, but if it doesn't do so, do it here
            if 'matched_idxs' not in targets:
                with torch.cuda.amp.autocast(enabled=args.amp):
                    targets['matched_idxs'] = compute_matched_idxs(targets['boxes'], model_ptr)

        if not args.cuda_graphs:
            optimizer.zero_grad()

        # init necessary data in the scratchpad
        with torch.cuda.amp.autocast(enabled=args.amp):
            init_scratchpad(images, targets, args.batch_size, args.num_classes, args.amp,
                            args.apex_focal_loss, args.max_boxes, args.cls_head_pad, args.reg_head_pad,
                            args.cuda_graphs)

        if lr_scheduler is not None:
            lr_scheduler.step()

        if args.cuda_graphs:
            if args.not_graphed_prologues:
                with torch.cuda.amp.autocast(enabled=args.amp):
                    # loss prologue: preprocess everything that does not require model forward and backward
                    # use the padded scratchpad buffers if reg_head_pad/cls_head_pad are toggled
                    targets_boxes = targets['boxes'] if not args.reg_head_pad else utils.ScratchPad.target_boxes_padded
                    targets_labels = targets['labels'] if not args.cls_head_pad else utils.ScratchPad.target_labels_padded

                    gt_classes_target, target_regression, num_foreground, valid_idxs, foreground_idxs_mask = \
                        loss_preprocessing(targets_boxes, targets_labels, targets['matched_idxs'], model_ptr,
                                           args.apex_focal_loss, args.max_boxes, args.cls_head_pad, args.reg_head_pad)

            static_input.copy_(images)
            # All necessary data is copied to the graph buffers in init_scratchpad
            # The graph is programmed to use pointers to the scratchpad (besides images)

            if args.not_graphed_prologues:
                static_prologues_out[0].copy_(gt_classes_target)
                static_prologues_out[1].copy_(target_regression)
                static_prologues_out[2].copy_(num_foreground)
                static_prologues_out[3].copy_(valid_idxs)
                static_prologues_out[4].copy_(foreground_idxs_mask)

            # graphed model comprises loss_preprocessing->forward->compute_loss->backward
            graphed_model.replay()
            if not args.skip_metric_loss:
                dist.all_reduce(tensor=static_loss, group=train_group)
                losses_reduced = static_loss / utils.get_world_size()
            if args.sync_after_graph_replay:
                torch.cuda.synchronize()
            sbridge.start_prof(SBridge.OPT_TIME)
            scaler.step(optimizer)
            scaler.update()
            sbridge.stop_prof(SBridge.OPT_TIME)

        else:
            with torch.cuda.amp.autocast(enabled=args.amp):
                # loss prologue: preprocess everything that does not require model forward and backward
                # use the padded scratchpad buffers if reg_head_pad/cls_head_pad are toggled
                targets_boxes = utils.ScratchPad.target_boxes_padded if args.reg_head_pad else targets['boxes']
                targets_labels = utils.ScratchPad.target_labels_padded if args.cls_head_pad else targets['labels']

                gt_classes_target, target_regression, num_foreground, valid_idxs, foreground_idxs_mask = \
                    loss_preprocessing(targets_boxes, targets_labels, targets['matched_idxs'], model_ptr,
                                       args.apex_focal_loss, args.max_boxes, args.cls_head_pad, args.reg_head_pad)

                # forward
                sbridge.start_prof(SBridge.FWD_TIME)

                model_output = model(images)
                # features = model_output[0:5]
                # head_outputs = {'cls_logits': model_output[5], 'bbox_regression': model_output[6]}

                # loss (given the prologue computations)
                cls_loss, reg_loss = compute_loss(model_ptr, model_output[5], model_output[6], valid_idxs,
                                                  gt_classes_target, num_foreground, target_regression,
                                                  foreground_idxs_mask, args.apex_focal_loss, args.reg_head_pad)
                loss_dict = {'classification': cls_loss, 'bbox_regression': reg_loss}
                losses = sum(loss for loss in loss_dict.values())

                # --- old loss (for debug)
                # loss_dict_ = model_ptr.compute_loss(targets, head_outputs)
                # assert(torch.allclose(loss_dict['classification'], loss_dict_['classification']))
                # assert(torch.allclose(loss_dict['bbox_regression'], loss_dict_['bbox_regression']))

                # reduce losses over all GPUs for logging purposes
                # TODO: remove
                loss_dict_reduced = utils.reduce_dict(loss_dict, group=train_group)
                losses_reduced = sum(loss for loss in loss_dict_reduced.values())
                loss_value = losses_reduced.item()
                sbridge.stop_prof(SBridge.FWD_TIME)

                if not math.isfinite(loss_value):
                    print("Loss is {}, stopping training".format(loss_value))
                    print(loss_dict_reduced)
                    sys.exit(1)

            # backward
            sbridge.start_prof(SBridge.BWD_TIME)
            scaler.scale(losses).backward()
            sbridge.stop_start_prof(SBridge.BWD_TIME, SBridge.OPT_TIME)
            scaler.step(optimizer)
            scaler.update()
            sbridge.stop_prof(SBridge.OPT_TIME)

        if not args.skip_metric_loss:
            if not args.cuda_graphs:
                metric_logger.update(loss=losses_reduced, **loss_dict_reduced)
            else:
                metric_logger.update(loss=losses_reduced)
            metric_logger.update(lr=optimizer.param_groups[0]["lr"])

        # Check async coco result
        if args.async_coco and not (metric_logger.current_iter % args.async_coco_check_freq):
            # FIXME(ahmadki): --num-eval-ranks
            if args.eval_rank == 0:
                results = async_executor.pop_if_done()
                # in case of multiple results are returned, get the highest mAP
                if results and len(results) > 0:
                    accuracy = max([result['bbox'][0] for result in results.values() if result], default=-1)

            if args.distributed:
                accuracy = utils.broadcast(accuracy, 0, group=train_group)

            if args.target_map and accuracy and accuracy >= args.target_map:
                break

        sbridge.stop_prof(SBridge.ITER_TIME)

    sbridge.stop_epoch_prof()
    mllogger.end(key=EPOCH_STOP, value=epoch, metadata={"epoch_num": epoch}, sync=True, sync_group=train_group)
    summary = metric_logger.summary
    if summary['samples'] > 0:
        throughput = summary['samples'] / (summary['end_time'] - summary['start_time'])
        mllogger.event(key='tracked_stats', value={'throughput': throughput}, metadata={'step': (epoch + 1)})
    return metric_logger, accuracy


@torch.no_grad()
def evaluate(model, data_loader, device, epoch, eval_group, args,
             graphed_model=None, static_input=None, static_output=None, sbridge=SBridge()):
    sbridge.start_eval_prof()
    mllogger.start(key=EVAL_START, value=epoch, metadata={"epoch_num": epoch},
                   sync=True, sync_group=eval_group)

    n_threads = torch.get_num_threads()
    # FIXME remove this and make paste_masks_in_image run on the GPU
    torch.set_num_threads(1)
    cpu_device = torch.device("cpu")
    model.eval()
    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Test:'

    iou_types = ["bbox"]
    if args.cocoeval == 'python':
        from coco.python_coco import PythonCocoEvaluator
        coco_evaluator = PythonCocoEvaluator(annotations_file=args.val_annotations_file,
                                             iou_types=iou_types, group=eval_group)
    elif args.cocoeval == 'nvidia':
        from coco.nvidia_coco import NVCocoEvaluator
        coco_evaluator = NVCocoEvaluator(annotations_file=args.val_annotations_file,
                                         iou_types=iou_types, num_threads=args.coco_threads, group=eval_group)
    else:
        assert False, f"Unknown coco evaluator implementation: {args.coco}"

    model_ptr = model.module if args.distributed else model

    for images, targets in metric_logger.log_every(data_loader, args.eval_print_freq, header):
        if args.dali_eval and images.shape[0] == 0:
            continue

        if not args.dali_eval:
            images = list(img.to(device, non_blocking=True) for img in images)

            if torch.cuda.is_available():
                torch.cuda.synchronize()

            # preprocessing
            for i, (image, target) in enumerate(zip(images, targets)):
                # add the original image size to targets
                targets[i]['original_image_size'] = image.shape[-2:]
            images, targets = model_ptr.transform(images, targets)

            images = images.tensors

        if args.data_layout == 'channels_last':
            images = images.to(memory_format=torch.channels_last)

        model_time = time.time()

        if not args.cuda_graphs_eval:
            with torch.cuda.amp.autocast(enabled=args.amp):
                model_output = model(images)
        else:
            if images.size(0) != args.eval_batch_size:
                static_input.fill_(0)
            static_input[:images.size(0)].copy_(images)
            graphed_model.replay()
            model_output = static_output
            if images.size(0) != args.eval_batch_size:
                model_output = [x[:images.size(0)] for x in model_output]

        with torch.cuda.amp.autocast(enabled=args.amp):
            features = model_output[0:5]
            head_outputs = {'cls_logits': model_output[5], 'bbox_regression': model_output[6]}

            outputs = model_ptr.eval_postprocess(images, features, targets, head_outputs, targets_dict=args.dali_eval)

        outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
        model_time = time.time() - model_time

        if args.dali_eval:
            res = {target.item(): output for target, output in zip(targets['image_id'], outputs)}
        else:
            res = {target["image_id"].item(): output for target, output in zip(targets, outputs)}
        evaluator_time = time.time()
        coco_evaluator.update(res)
        evaluator_time = time.time() - evaluator_time
        metric_logger.update(model_time=model_time, evaluator_time=evaluator_time)

    # gather the stats from all processes
    metric_logger.synchronize_between_processes(group=eval_group)
    print("Averaged stats:", metric_logger)
    coco_evaluator.synchronize_between_processes()

    def log_callback(future):
        stats = future.result()
        accuracy = stats['bbox'][0]
        mllogger.event(key=EVAL_ACCURACY, value=accuracy, metadata={"epoch_num": epoch})
        mllogger.end(key=EVAL_STOP, value=epoch, metadata={"epoch_num": epoch})

    accuracy = None
    if (not args.distributed) or args.eval_rank == 0:
        if args.async_coco:
            async_executor.submit(tag=str(epoch),
                                  fn=coco_evaluator.get_stats_from_evaluator,
                                  evaluator=coco_evaluator)
            async_executor.add_done_callback(tag=str(epoch), fn=log_callback)
        else:
            stats = coco_evaluator.get_stats_from_evaluator(coco_evaluator)
            accuracy = stats['bbox'][0]
            mllogger.event(key=EVAL_ACCURACY, value=accuracy, metadata={"epoch_num": epoch})
            mllogger.end(key=EVAL_STOP, value=epoch, metadata={"epoch_num": epoch})

    if (not args.async_coco) and args.distributed:
        accuracy = utils.broadcast(accuracy, 0, group=eval_group)

    torch.set_num_threads(n_threads)
    sbridge.stop_eval_prof()
    return accuracy