ddp.sh 4.36 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/bin/bash

# Copyright (c) 2018-2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# runs benchmark and reports time to convergence
# to use the script:
#   run_and_time.sh

set +x
set -e

source config_DGXA100_001x08x032.sh

# Only rank print
[ "${SLURM_LOCALID-0}" -ne 0 ] && set +x


# start timing
start=$(date +%s)
start_fmt=$(date +%Y-%m-%d\ %r)
echo "STARTING TIMING RUN AT $start_fmt"

# Set variables
[ "${DEBUG}" = "1" ] && set -x
LR=${LR:-0.0001}
WARMUP_EPOCHS=${WARMUP_EPOCHS:-1}
BATCHSIZE=${BATCHSIZE:-2}
EVALBATCHSIZE=${EVALBATCHSIZE:-${BATCHSIZE}}
NUMEPOCHS=${NUMEPOCHS:-10}
LOG_INTERVAL=${LOG_INTERVAL:-20}
DATASET_DIR=${DATASET_DIR:-"/public/home/liangjj/2023/training_results_v2.1-main/NVIDIA/benchmarks/ssd/implementations/pytorch-22.09/public-scripts/datasets/open-images-v6"}
TORCH_HOME=${TORCH_HOME:-"$(pwd)/torch-home"}
TIME_TAGS=${TIME_TAGS:-0}
NVTX_FLAG=${NVTX_FLAG:-0}
NCCL_TEST=${NCCL_TEST:-0}
EPOCH_PROF=${EPOCH_PROF:-0}
SYNTH_DATA=${SYNTH_DATA:-0}
DISABLE_CG=${DISABLE_CG:-0}

# run benchmark
echo "running benchmark"
#if [ ${NVTX_FLAG} -gt 0 ]; then
## FIXME mfrank 2022-May-24: NSYSCMD needs to be an array, not a space-separated string
# NSYSCMD=" /nsight/bin/nsys profile --capture-range cudaProfilerApi --capture-range-end stop --sample=none --cpuctxsw=none  --trace=cuda,nvtx  --force-overwrite true --output /results/single_stage_detector_pytorch_${DGXNNODES}x${DGXNGPU}x${BATCHSIZE}_${DATESTAMP}_${SLURM_PROCID}_${SYNTH_DATA}_${DISABLE_CG}.nsys-rep "
#else
# NSYSCMD=""
#fi

#if [ ${SYNTH_DATA} -gt 0 ]; then
#EXTRA_PARAMS+=" --syn-dataset --cuda-graphs-syn "
#EXTRA_PARAMS=$(echo $EXTRA_PARAMS | sed 's/--dali//')
#fi

declare -a CMD
#if [ -n "${SLURM_LOCALID-}" ]; then
#    # Mode 1: Slurm launched a task for each GPU and set some envvars; no need for parallel launch
#  if [ "${SLURM_NTASKS}" -gt "${SLURM_JOB_NUM_NODES}" ]; then
#    CMD=( 'bindpcie' '--ib=single' '--' ${NSYSCMD} 'python' '-u' )
#  else
#    CMD=( ${NSYSCMD} 'python' '-u' )
#  fi
#else
#  # Mode 2: Single-node Docker, we've been launched with `torch_run`
#  # TODO: Replace below CMD with NSYSCMD..., but make sure NSYSCMD is an array, not a string
#  CMD=( "python" )
#fi
CMD=( "python" )


#if [ "$LOGGER" = "apiLog.sh" ];
#then
#  LOGGER="${LOGGER} -p MLPerf/${MODEL_NAME} -v ${FRAMEWORK}/train/${DGXSYSTEM}"
  # TODO(ahmadki): track the apiLog.sh bug and remove the workaround
  # there is a bug in apiLog.sh preventing it from collecting
  # NCCL logs, the workaround is to log a single rank only
  # LOCAL_RANK is set with an enroot hook for Pytorch containers
  # SLURM_LOCALID is set by Slurm
  # OMPI_COMM_WORLD_LOCAL_RANK is set by mpirun
#  readonly node_rank="${SLURM_NODEID:-0}"
#  readonly local_rank="${LOCAL_RANK:=${SLURM_LOCALID:=${OMPI_COMM_WORLD_LOCAL_RANK:-}}}"
#  if [ "$node_rank" -eq 0 ] && [ "$local_rank" -eq 0 ];
#  then
#    LOGGER=$LOGGER
#  else
#    LOGGER=""
#  fi
#fi

PARAMS=(
      --lr                      "${LR}"
      --batch-size              "${BATCHSIZE}"
      --eval-batch-size         "${EVALBATCHSIZE}"
      --epochs                  "${NUMEPOCHS}"
      --print-freq              "${LOG_INTERVAL}"
      --dataset-path            "${DATASET_DIR}"
      --warmup-epochs           "${WARMUP_EPOCHS}"
)


export HIP_VISIBLE_DEVICES=4,5
export HSA_FORCE_FINE_GRAIN_PCIE=1
#export MIOPEN_FIND_MODE=5
#export NCCL_NET_GDR_LEVEL=5
export NCCL_P2P_LEVEL=5

# run training
#${LOGGER:-} "${CMD[@]}" train.py "${PARAMS[@]}" ${EXTRA_PARAMS} ; ret_code=$?
python -m torch.distributed.launch --nnodes 1 --nproc_per_node=2  train.py "${PARAMS[@]}" ${EXTRA_PARAMS} ; ret_code=$?


sleep 3
if [[ $ret_code != 0 ]]; then exit $ret_code; fi

# end timing
end=$(date +%s)
end_fmt=$(date +%Y-%m-%d\ %r)
echo "ENDING TIMING RUN AT $end_fmt"

# report result
result=$(( $end - $start ))
result_name="SINGLE_STAGE_DETECTOR"

echo "RESULT,$result_name,,$result,nvidia,$start_fmt"