dali.py 8.43 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#           http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
import pdb

import numpy as np
import torch

from nvidia.dali.pipeline import Pipeline
import nvidia.dali.fn as fn
import nvidia.dali.types as types
from nvidia.dali.plugin.pytorch import DALIGenericIterator, LastBatchPolicy
import nvidia.dali.plugin_manager as plugin_manager


plugin_manager.load_library('/usr/local/lib/lib_box_iou.so')
plugin_manager.load_library('/usr/local/lib/lib_proposal_matcher.so')


class DaliDataIterator(object):
    def __init__(self, data_path, anno_path, batch_size,
                 num_shards, shard_id, is_training,
                 image_size=(800, 800), num_threads=8, prefetch_queue_depth=2,
                 compute_matched_idxs=False, anchors=None, cpu_decode=False,
                 lazy_init=True, cache=False, seed=-1):
        self.data_path = data_path
        self.anno_path = anno_path
        self.batch_size = batch_size
        self.num_shards = num_shards
        self.shard_id = shard_id
        self.is_training = is_training
        self.compute_matched_idxs = compute_matched_idxs
        self.num_threads = num_threads
        self.seed = seed
        self.lazy_init = lazy_init
        self.image_size = image_size
        self.prefetch_queue_depth = prefetch_queue_depth
        self.cpu_decode = cpu_decode
        self.cache = cache
        self.cache_ready = False
        self.cached_vals = []
        assert not(self.is_training and self.cache), "cache can't be used with training"

        self.pipe = Pipeline(batch_size=self.batch_size,
                             num_threads=self.num_threads,
                             seed=self.seed,
                             device_id=torch.cuda.current_device())
        with self.pipe:
            inputs, bboxes, labels, image_ids = fn.readers.coco(
                name="coco",
                file_root=self.data_path,
                annotations_file=self.anno_path,
                num_shards=self.num_shards,
                shard_id=self.shard_id,
                stick_to_shard=not self.is_training,
                pad_last_batch=not self.is_training,
                lazy_init=self.lazy_init,
                ltrb=True,
                shuffle_after_epoch=self.is_training,
                avoid_class_remapping=True,
                image_ids=True,
                ratio=True,
                prefetch_queue_depth=self.prefetch_queue_depth,
                read_ahead=True,
                skip_empty=False)

            # Images
            images_shape = fn.peek_image_shape(inputs)  # HWC
            if self.cpu_decode:
                images = fn.decoders.image(inputs, device='cpu').gpu()
            else:
                images = fn.decoders.image(inputs, device='mixed')

            if self.is_training:
                flip = fn.random.coin_flip(probability=0.5)
                images = fn.flip(images, horizontal=flip, device='gpu')

            mean = np.array([[[255 * 0.485]], [[255 * 0.456]], [[255 * 0.406]]], dtype=np.float32)
            stddev = np.array([[[255 * 0.229]], [[255 * 0.224]], [[255 * 0.225]]], dtype=np.float32)
            images = fn.normalize(fn.transpose(images, perm=[2, 0, 1]),
                                  axes=[1, 2],
                                  mean=mean,
                                  stddev=stddev)
            images = fn.resize(images, resize_x=self.image_size[0], resize_y=self.image_size[1])

            # Labels
            labels_shape = fn.shapes(labels)
            labels = fn.pad(labels, axes=(0,))
            labels = labels.gpu()
            labels = fn.cast(labels, dtype=types.INT64)

            # BBoxes
            if self.is_training:
                bboxes = fn.bb_flip(bboxes, horizontal=flip, ltrb=True)
            lt_x = bboxes[:, 0] * self.image_size[0]
            lt_y = bboxes[:, 1] * self.image_size[1]
            rb_x = bboxes[:, 2] * self.image_size[0]
            rb_y = bboxes[:, 3] * self.image_size[1]
            bboxes = fn.stack(lt_x, lt_y, rb_x, rb_y, axis=1)
            bboxes_shape = fn.shapes(bboxes)
            bboxes = bboxes.gpu()
            if self.compute_matched_idxs:
                self.anchors = anchors[0]
                match_quality_matrix = fn.box_iou(bboxes, self.anchors, device='gpu')
                matched_idxs = fn.proposal_matcher(match_quality_matrix, device='gpu')
            bboxes = fn.pad(bboxes, axes=(0,))

            set_outputs = [images, images_shape, image_ids, bboxes, bboxes_shape, labels, labels_shape]
            if self.compute_matched_idxs:
                set_outputs.append(matched_idxs)

            self.pipe.set_outputs(*set_outputs)
        self.pipe.build()

        output_map = ['images', 'images_shape', 'images_id', 'boxes', 'boxes_shape', 'labels', 'labels_shape']
        if self.compute_matched_idxs:
            output_map.append('matched_idxs')

        # With the data set [1,2,3,4,5,6,7] and the batch size 2:
        # last_batch_policy = LastBatchPolicy.PARTIAL, last_batch_padded = True -> last batch = [7], next iteration will return [1, 2]    <= Validation
        # last_batch_policy = LastBatchPolicy.PARTIAL, last_batch_padded = False -> last batch = [7], next iteration will return [2, 3]
        # last_batch_policy = LastBatchPolicy.FILL, last_batch_padded = True -> last batch = [7, 7], next iteration will return [1, 2]
        # last_batch_policy = LastBatchPolicy.FILL, last_batch_padded = False -> last batch = [7, 1], next iteration will return [2, 3]   <= Training
        # last_batch_policy = LastBatchPolicy.DROP, last_batch_padded = True -> last batch = [5, 6], next iteration will return [1, 2]
        # last_batch_policy = LastBatchPolicy.DROP, last_batch_padded = False -> last batch = [5, 6], next iteration will return [2, 3]
        last_batch_policy = LastBatchPolicy.FILL if self.is_training else LastBatchPolicy.PARTIAL
        self.dali_iter = DALIGenericIterator(pipelines=[self.pipe],
                                             reader_name="coco",
                                             output_map=output_map,
                                             auto_reset=True,
                                             last_batch_policy=last_batch_policy)

    def __len__(self):
        return len(self.dali_iter)

    def __iter__(self):
        if self.cache_ready:
            return iter(self.cached_vals)
        return itertools.chain(self.cached_vals, self.__iter())

    def __iter(self):
        for obj in self.dali_iter:
            obj = obj[0]
            
            # images
            images = obj['images']

            # targets
            boxes = [b[0][:b[1][0]] for b in zip(obj['boxes'], obj['boxes_shape'])]
            labels = [b[0][:b[1][0]] for b in zip(obj['labels'].to(torch.int64), obj['labels_shape'])]
            image_id = obj['images_id']
            original_image_size = obj['images_shape']
            targets = dict(boxes=boxes, labels=labels, image_id=image_id, original_image_size=original_image_size[:, 0:2])

            if self.compute_matched_idxs:
                matched_idxs = obj['matched_idxs'][:, 0, :]
                targets['matched_idxs'] = matched_idxs

            if self.cache:
                self.cached_vals.append((images, targets))
            yield images, targets

        if self.cache:
            self.cache_ready = True


if __name__ == '__main__':
    device = torch.device(0)
    # dali_iter = DaliDataIterator(data_path='/datasets/open-images-v6-mlperf/train/data',
    #                              anno_path='/datasets/open-images-v6-mlperf/train/labels/openimages-mlperf.json',
    #                              batch_size=8, num_threads=4, world=1)
    dali_iter = DaliDataIterator(data_path='/datasets/coco2017/train2017',
                                 anno_path='/datasets/coco2017/annotations/instances_train2017.json',
                                 batch_size=2, num_threads=1, world=1, training=True)
    for images, targets in dali_iter:
        pdb.set_trace()