CocoUtils.m 16.2 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
classdef CocoUtils
  % Utility functions for testing and validation of COCO code.
  %
  % The following utility functions are defined:
  %  convertPascalGt    - Convert ground truth for PASCAL to COCO format.
  %  convertImageNetGt  - Convert ground truth for ImageNet to COCO format.
  %  convertPascalDt    - Convert detections on PASCAL to COCO format.
  %  convertImageNetDt  - Convert detections on ImageNet to COCO format.
  %  validateOnPascal   - Validate COCO eval code against PASCAL code.
  %  validateOnImageNet - Validate COCO eval code against ImageNet code.
  %  generateFakeDt     - Generate fake detections from ground truth.
  %  validateMaskApi    - Validate MaskApi against Matlab functions.
  %  gasonSplit         - Split JSON file into multiple JSON files.
  %  gasonMerge         - Merge JSON files into single JSON file.
  % Help on each functions can be accessed by: "help CocoUtils>function".
  %
  % See also CocoApi MaskApi CocoEval CocoUtils>convertPascalGt
  % CocoUtils>convertImageNetGt CocoUtils>convertPascalDt
  % CocoUtils>convertImageNetDt CocoUtils>validateOnPascal
  % CocoUtils>validateOnImageNet CocoUtils>generateFakeDt
  % CocoUtils>validateMaskApi CocoUtils>gasonSplit CocoUtils>gasonMerge
  %
  % Microsoft COCO Toolbox.      version 2.0
  % Data, paper, and tutorials available at:  http://mscoco.org/
  % Code written by Piotr Dollar and Tsung-Yi Lin, 2015.
  % Licensed under the Simplified BSD License [see coco/license.txt]
  
  methods( Static )
    function convertPascalGt( dataDir, year, split, annFile )
      % Convert ground truth for PASCAL to COCO format.
      %
      % USAGE
      %  CocoUtils.convertPascalGt( dataDir, year, split, annFile )
      %
      % INPUTS
      %  dataDir    - dir containing VOCdevkit/
      %  year       - dataset year (e.g. '2007')
      %  split      - dataset split (e.g. 'val')
      %  annFile    - annotation file for writing results
      if(exist(annFile,'file')), return; end
      fprintf('Converting PASCAL VOC dataset...     '); clk=tic;
      dev=[dataDir '/VOCdevkit/']; addpath(genpath([dev '/VOCcode']));
      VOCinit; C=VOCopts.classes'; catsMap=containers.Map(C,1:length(C));
      f=fopen([dev '/VOC' year '/ImageSets/Main/' split '.txt']);
      is=textscan(f,'%s %*s'); is=is{1}; fclose(f); n=length(is);
      data=CocoUtils.initData(C,n);
      for i=1:n, nm=[is{i} '.jpg'];
        f=[dev '/VOC' year '/Annotations/' is{i} '.xml'];
        R=PASreadrecord(f); hw=R.imgsize([2 1]); O=R.objects;
        id=is{i}; id(id=='_')=[]; id=str2double(id);
        ignore=[O.difficult]; bbs=cat(1,O.bbox);
        t=catsMap.values({O.class}); catIds=[t{:}]; iscrowd=ignore*0;
        data=CocoUtils.addData(data,nm,id,hw,catIds,ignore,iscrowd,bbs);
      end
      f=fopen(annFile,'w'); fwrite(f,gason(data)); fclose(f);
      fprintf('DONE (t=%0.2fs).\n',toc(clk));
    end
    
    function convertImageNetGt( dataDir, year, split, annFile )
      % Convert ground truth for ImageNet to COCO format.
      %
      % USAGE
      %  CocoUtils.convertImageNetGt( dataDir, year, split, annFile )
      %
      % INPUTS
      %  dataDir    - dir containing ILSVRC*/ folders
      %  year       - dataset year (e.g. '2013')
      %  split      - dataset split (e.g. 'val')
      %  annFile    - annotation file for writing results
      if(exist(annFile,'file')), return; end
      fprintf('Converting ImageNet dataset...       '); clk=tic;
      dev=[dataDir '/ILSVRC' year '_devkit/'];
      addpath(genpath([dev '/evaluation/']));
      t=[dev '/data/meta_det.mat'];
      t=load(t); synsets=t.synsets(1:200); catNms={synsets.name};
      catsMap=containers.Map({synsets.WNID},1:length(catNms));
      if(~strcmp(split,'val')), blacklist=cell(1,2); else
        f=[dev '/data/' 'ILSVRC' year '_det_validation_blacklist.txt'];
        f=fopen(f); blacklist=textscan(f,'%d %s'); fclose(f);
        t=catsMap.values(blacklist{2}); blacklist{2}=[t{:}];
      end
      if(strcmp(split,'train'))
        dl=@(i) [dev '/data/det_lists/' split '_pos_' int2str(i) '.txt'];
        is=cell(1,200); for i=1:200, f=fopen(dl(i));
          is{i}=textscan(f,'%s %*s'); is{i}=is{i}{1}; fclose(f); end
        is=unique(cat(1,is{:})); n=length(is);
      else
        f=fopen([dev '/data/det_lists/' split '.txt']);
        is=textscan(f,'%s %*s'); is=is{1}; fclose(f); n=length(is);
      end
      data=CocoUtils.initData(catNms,n);
      for i=1:n
        f=[dataDir '/ILSVRC' year '_DET_bbox_' split '/' is{i} '.xml'];
        R=VOCreadxml(f); R=R.annotation; nm=[is{i} '.JPEG'];
        hw=str2double({R.size.height R.size.width});
        if(~isfield(R,'object')), catIds=[]; bbs=[]; else
          O=R.object; t=catsMap.values({O.name}); catIds=[t{:}];
          b=[O.bndbox]; bbs=str2double({b.xmin; b.ymin; b.xmax; b.ymax})';
        end
        j=blacklist{2}(blacklist{1}==i); m=numel(j); b=[0 0 hw(2) hw(1)];
        catIds=[j catIds]; bbs=[repmat(b,m,1); bbs]; %#ok<AGROW>
        ignore=ismember(catIds,j); iscrowd=ignore*0; iscrowd(1:m)=1;
        data=CocoUtils.addData(data,nm,i,hw,catIds,ignore,iscrowd,bbs);
      end
      f=fopen(annFile,'w'); fwrite(f,gason(data)); fclose(f);
      fprintf('DONE (t=%0.2fs).\n',toc(clk));
    end
    
    function convertPascalDt( srcFiles, tarFile )
      % Convert detections on PASCAL to COCO format.
      %
      % USAGE
      %  CocoUtils.convertPascalDt( srcFiles, tarFile )
      %
      % INPUTS
      %  srcFiles   - source detection file(s) in PASCAL format
      %  tarFile    - target detection file in COCO format
      if(exist(tarFile,'file')), return; end; R=[];
      for i=1:length(srcFiles), f=fopen(srcFiles{i},'r');
        R1=textscan(f,'%d %f %f %f %f %f'); fclose(f);
        [~,~,x0,y0,x1,y1]=deal(R1{:}); b=[x0-1 y0-1 x1-x0+1 y1-y0+1];
        b(:,3:4)=max(b(:,3:4),1); b=mat2cell(b,ones(1,size(b,1)),4);
        R=[R; struct('image_id',num2cell(R1{1}),'bbox',b,...
          'category_id',i,'score',num2cell(R1{2}))]; %#ok<AGROW>
      end
      f=fopen(tarFile,'w'); fwrite(f,gason(R)); fclose(f);
    end
    
    function convertImageNetDt( srcFile, tarFile )
      % Convert detections on ImageNet to COCO format.
      %
      % USAGE
      %  CocoUtils.convertImageNetDt( srcFile, tarFile )
      %
      % INPUTS
      %  srcFile    - source detection file in ImageNet format
      %  tarFile    - target detection file in COCO format
      if(exist(tarFile,'file')), return; end; f=fopen(srcFile,'r');
      R=textscan(f,'%d %d %f %f %f %f %f'); fclose(f);
      [~,~,~,x0,y0,x1,y1]=deal(R{:}); b=[x0-1 y0-1 x1-x0+1 y1-y0+1];
      b(:,3:4)=max(b(:,3:4),1); bbox=mat2cell(b,ones(1,size(b,1)),4);
      R=struct('image_id',num2cell(R{1}),'bbox',bbox,...
        'category_id',num2cell(R{2}),'score',num2cell(R{3}));
      f=fopen(tarFile,'w'); fwrite(f,gason(R)); fclose(f);
    end
    
    function validateOnPascal( dataDir )
      % Validate COCO eval code against PASCAL code.
      %
      % USAGE
      %  CocoUtils.validateOnPascal( dataDir )
      %
      % INPUTS
      %  dataDir    - dir containing VOCdevkit/
      split='val'; year='2007'; thrs=0:.001:1; T=length(thrs);
      dev=[dataDir '/VOCdevkit/']; addpath(genpath([dev '/VOCcode/']));
      d=pwd; cd(dev); VOCinit; cd(d); O=VOCopts; O.testset=split;
      O.detrespath=[O.detrespath(1:end-10) split '_%s.txt'];
      catNms=O.classes; K=length(catNms); ap=zeros(K,1);
      for i=1:K, [R,P]=VOCevaldet(O,'comp3',catNms{i},0); R1=[R; inf];
        P1=[P; 0]; for t=1:T, ap(i)=ap(i)+max(P1(R1>=thrs(t)))/T; end; end
      srcFile=[dev '/results/VOC' year '/Main/comp3_det_' split];
      resFile=[srcFile '.json']; annFile=[dev '/VOC2007/' split '.json'];
      sfs=cell(1,K); for i=1:K, sfs{i}=[srcFile '_' catNms{i} '.txt']; end
      CocoUtils.convertPascalGt(dataDir,year,split,annFile);
      CocoUtils.convertPascalDt(sfs,resFile);
      D=CocoApi(annFile); R=D.loadRes(resFile); E=CocoEval(D,R);
      p=E.params; p.recThrs=thrs; p.iouThrs=.5; p.areaRng=[0 inf];
      p.useSegm=0; p.maxDets=inf; E.params=p; E.evaluate(); E.accumulate();
      apCoco=squeeze(mean(E.eval.precision,2)); deltas=abs(apCoco-ap);
      fprintf('AP delta: mean=%.2e median=%.2e max=%.2e\n',...
        mean(deltas),median(deltas),max(deltas))
      if(max(deltas)>1e-2), msg='FAILED'; else msg='PASSED'; end
      warning(['Eval code *' msg '* validation!']);
    end
    
    function validateOnImageNet( dataDir )
      % Validate COCO eval code against ImageNet code.
      %
      % USAGE
      %  CocoUtils.validateOnImageNet( dataDir )
      %
      % INPUTS
      %  dataDir    - dir containing ILSVRC*/ folders
      warning(['Set pixelTolerance=0 in line 30 of eval_detection.m '...
        '(and delete cache) otherwise AP will differ by >1e-4!']);
      year='2013'; dev=[dataDir '/ILSVRC' year '_devkit/'];
      fs = { [dev 'evaluation/demo.val.pred.det.txt']
        [dataDir '/ILSVRC' year '_DET_bbox_val/']
        [dev 'data/meta_det.mat']
        [dev 'data/det_lists/val.txt']
        [dev 'data/ILSVRC' year '_det_validation_blacklist.txt']
        [dev 'data/ILSVRC' year '_det_validation_cache.mat'] };
      addpath(genpath([dev 'evaluation/']));
      ap=eval_detection(fs{:})';
      resFile=[fs{1}(1:end-3) 'json'];
      annFile=[dev 'data/ILSVRC' year '_val.json'];
      CocoUtils.convertImageNetDt(fs{1},resFile);
      CocoUtils.convertImageNetGt(dataDir,year,'val',annFile)
      D=CocoApi(annFile); R=D.loadRes(resFile); E=CocoEval(D,R);
      p=E.params; p.recThrs=0:.0001:1; p.iouThrs=.5; p.areaRng=[0 inf];
      p.useSegm=0; p.maxDets=inf; E.params=p; E.evaluate(); E.accumulate();
      apCoco=squeeze(mean(E.eval.precision,2)); deltas=abs(apCoco-ap);
      fprintf('AP delta: mean=%.2e median=%.2e max=%.2e\n',...
        mean(deltas),median(deltas),max(deltas))
      if(max(deltas)>1e-4), msg='FAILED'; else msg='PASSED'; end
      warning(['Eval code *' msg '* validation!']);
    end
    
    function generateFakeDt( coco, dtFile, varargin )
      % Generate fake detections from ground truth.
      %
      % USAGE
      %  CocoUtils.generateFakeDt( coco, dtFile, varargin )
      %
      % INPUTS
      %  coco       - instance of CocoApi containing ground truth
      %  dtFile     - target file for writing detection results
      %  params     - parameters (struct or name/value pairs)
      %   .n          - [100] number images for which to generate dets
      %   .fn         - [.20] false negative rate (0<fn<1)
      %   .fp         - [.10] false positive rate (0<fp<fn)
      %   .sigma      - [.10] translation noise (relative to object width)
      %   .seed       - [0] random seed for reproducibility
      %   .type       - ['bbox'] can be 'bbox', 'segm', or 'keypoints'
      fprintf('Generating fake detection data...    '); clk=tic;
      def={'n',100,'fn',.20,'fp',.10,'sigma',.10,'seed',0,'type','bbox'};
      opts=getPrmDflt(varargin,def,1); n=opts.n;
      if(strcmp(opts.type,'segm')), opts.type='segmentation'; end
      assert(any(strcmp(opts.type,{'bbox','segmentation','keypoints'})));
      rstream = RandStream('mrg32k3a','Seed',opts.seed); k=n*100;
      R=struct('image_id',[],'category_id',[],opts.type,[],'score',[]);
      imgIds=sort(coco.getImgIds()); imgIds=imgIds(1:n); R=repmat(R,1,k);
      imgs=coco.loadImgs(imgIds); catIds=coco.getCatIds(); k=0;
      for i=1:n
        A=coco.loadAnns(coco.getAnnIds('imgIds',imgIds(i),'iscrowd',0));
        m=length(A); h=imgs(i).height; w=imgs(i).width;
        for j=1:m, t=rand(rstream);
          if(t<opts.fp), catId=catIds(randi(rstream,length(catIds)));
          elseif(t<opts.fn), continue; else catId=A(j).category_id; end
          bb=A(j).bbox; dx=round(randn(rstream)*opts.sigma*bb(3));
          if( strcmp(opts.type,'bbox') )
            x0=max(0,bb(1)+dx); x1=min(w-1,bb(1)+bb(3)+dx-1);
            bb(1)=x0; bb(3)=x1-x0+1; if(bb(3)==0), continue; end; o=bb;
          elseif( strcmp(opts.type,'segmentation') )
            M=MaskApi.decode(MaskApi.frPoly(A(j).segmentation,h,w)); T=M*0;
            T(:,max(1,1+dx):min(w,w+dx))=M(:,max(1,1-dx):min(w,w-dx));
            if(nnz(T)==0), continue; end; o=MaskApi.encode(T);
          elseif( strcmp(opts.type,'keypoints') )
            o=A(j).keypoints; v=o(3:3:end)>0; if(~any(v)), continue; end
            x=o(1:3:end); y=o(2:3:end); x(~v)=mean(x(v)); y(~v)=mean(y(v));
            x=max(0,min(w-1,x+dx)); o(1:3:end)=x; o(2:3:end)=y;
          end
          k=k+1; R(k).image_id=imgIds(i); R(k).category_id=catId;
          R(k).(opts.type)=o; R(k).score=round(rand(rstream)*1000)/1000;
        end
      end
      R=R(1:k); f=fopen(dtFile,'w'); fwrite(f,gason(R)); fclose(f);
      fprintf('DONE (t=%0.2fs).\n',toc(clk));
    end
    
    function validateMaskApi( coco )
      % Validate MaskApi against Matlab functions.
      %
      % USAGE
      %  CocoUtils.validateMaskApi( coco )
      %
      % INPUTS
      %  coco       - instance of CocoApi containing ground truth
      S=coco.data.annotations; S=S(~[S.iscrowd]); S={S.segmentation};
      h=1000; n=1000; Z=cell(1,n); A=Z; B=Z; M=Z; IB=zeros(1,n);
      fprintf('Running MaskApi implementations...   '); clk=tic;
      for i=1:n, A{i}=MaskApi.frPoly(S{i},h,h); end
      Ia=MaskApi.iou(A{1},[A{:}]);
      fprintf('DONE (t=%0.2fs).\n',toc(clk));
      fprintf('Running Matlab implementations...    '); clk=tic;
      for i=1:n, M1=0; for j=1:length(S{i}), x=S{i}{j}+.5;
          M1=M1+poly2mask(x(1:2:end),x(2:2:end),h,h); end
        M{i}=uint8(M1>0); B{i}=MaskApi.encode(M{i});
        IB(i)=sum(sum(M{1}&M{i}))/sum(sum(M{1}|M{i}));
      end
      fprintf('DONE (t=%0.2fs).\n',toc(clk));
      if(isequal(A,B)&&isequal(Ia,IB)),
        msg='PASSED'; else msg='FAILED'; end
      warning(['MaskApi *' msg '* validation!']);
    end
    
    function gasonSplit( name, k )
      % Split JSON file into multiple JSON files.
      %
      % Splits file 'name.json' into multiple files 'name-*.json'. Only
      % works for JSON arrays. Memory efficient. Inverted by gasonMerge().
      %
      % USAGE
      %  CocoUtils.gasonSplit( name, k )
      %
      % INPUTS
      %  name       - file containing JSON array (w/o '.json' ext)
      %  k          - number of files to split JSON into
      s=gasonMex('split',fileread([name '.json']),k); k=length(s);
      for i=1:k, f=fopen(sprintf('%s-%06i.json',name,i),'w');
        fwrite(f,s{i}); fclose(f); end
    end
    
    function gasonMerge( name )
      % Merge JSON files into single JSON file.
      %
      % Merge files 'name-*.json' into single file 'name.json'. Only works
      % for JSON arrays. Memory efficient. Inverted by gasonSplit().
      %
      % USAGE
      %  CocoUtils.gasonMerge( name )
      %
      % INPUTS
      %  name       - files containing JSON arrays (w/o '.json' ext)
      s=dir([name '-*.json']); s=sort({s.name}); k=length(s);
      p=fileparts(name); for i=1:k, s{i}=fullfile(p,s{i}); end
      for i=1:k, s{i}=fileread(s{i}); end; s=gasonMex('merge',s);
      f=fopen([name '.json'],'w'); fwrite(f,s); fclose(f);
    end
  end
  
  methods( Static, Access=private )
    function data = initData( catNms, n )
      % Helper for convert() functions: init annotations.
      m=length(catNms); ms=num2cell(1:m);
      I = struct('file_name',0,'height',0,'width',0,'id',0);
      C = struct('supercategory','none','id',ms,'name',catNms);
      A = struct('segmentation',0,'area',0,'iscrowd',0,...
        'image_id',0,'bbox',0,'category_id',0,'id',0,'ignore',0);
      I=repmat(I,1,n); A=repmat(A,1,n*20);
      data = struct('images',I,'type','instances',...
        'annotations',A,'categories',C,'nImgs',0,'nAnns',0);
    end
    
    function data = addData( data,nm,id,hw,catIds,ignore,iscrowd,bbs )
      % Helper for convert() functions: add annotations.
      data.nImgs=data.nImgs+1;
      data.images(data.nImgs)=struct('file_name',nm,...
        'height',hw(1),'width',hw(2),'id',id);
      for j=1:length(catIds), data.nAnns=data.nAnns+1; k=data.nAnns;
        b=bbs(j,:); b=b-1; b(3:4)=b(3:4)-b(1:2)+1;
        x1=b(1); x2=b(1)+b(3); y1=b(2); y2=b(2)+b(4);
        S={{[x1 y1 x1 y2 x2 y2 x2 y1]}}; a=b(3)*b(4);
        data.annotations(k)=struct('segmentation',S,'area',a,...
          'iscrowd',iscrowd(j),'image_id',id,'bbox',b,...
          'category_id',catIds(j),'id',k,'ignore',ignore(j));
      end
      if( data.nImgs == length(data.images) )
        data.annotations=data.annotations(1:data.nAnns);
        data=rmfield(data,{'nImgs','nAnns'});
      end
    end
  end
  
end