CocoApi.lua 10.5 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
--[[----------------------------------------------------------------------------

Interface for accessing the Common Objects in COntext (COCO) dataset.

For an overview of the API please see http://mscoco.org/dataset/#download.
CocoApi.lua (this file) is modeled after the Matlab CocoApi.m:
  https://github.com/pdollar/coco/blob/master/MatlabAPI/CocoApi.m

The following API functions are defined in the Lua API:
  CocoApi    - Load COCO annotation file and prepare data structures.
  getAnnIds  - Get ann ids that satisfy given filter conditions.
  getCatIds  - Get cat ids that satisfy given filter conditions.
  getImgIds  - Get img ids that satisfy given filter conditions.
  loadAnns   - Load anns with the specified ids.
  loadCats   - Load cats with the specified ids.
  loadImgs   - Load imgs with the specified ids.
  showAnns   - Display the specified annotations.
Throughout the API "ann"=annotation, "cat"=category, and "img"=image.
For detailed usage information please see cocoDemo.lua.

LIMITATIONS: the following API functions are NOT defined in the Lua API:
  loadRes    - Load algorithm results and create API for accessing them.
  download   - Download COCO images from mscoco.org server.
In addition, currently the getCatIds() and getImgIds() do not accept filters.
getAnnIds() can be called using getAnnIds({imgId=id}) and getAnnIds({catId=id}).

Note: loading COCO JSON annotations to Lua tables is quite slow. Hence, a call
to CocApi(annFile) converts the annotations to a custom 'flattened' format that
is more efficient. The first time a COCO JSON is loaded, the conversion is
invoked (this may take up to a minute). The converted data is then stored in a
t7 file (the code must have write permission to the dir of the JSON file).
Future calls of cocoApi=CocApi(annFile) take a fraction of a second. To view the
created data just inspect cocoApi.data of a created instance of the CocoApi.

Common Objects in COntext (COCO) Toolbox.      version 3.0
Data, paper, and tutorials available at:  http://mscoco.org/
Code written by Pedro O. Pinheiro and Piotr Dollar, 2016.
Licensed under the Simplified BSD License [see coco/license.txt]

------------------------------------------------------------------------------]]

local json = require 'cjson'
local coco = require 'coco.env'

local TensorTable = torch.class('TensorTable',coco)
local CocoSeg = torch.class('CocoSeg',coco)
local CocoApi = torch.class('CocoApi',coco)

--------------------------------------------------------------------------------

--[[ TensorTable is a lightweight data structure for storing variable size 1D
tensors. Tables of tensors are slow to save/load to disk. Instead, TensorTable
stores all the data in a single long tensor (along with indices into the tensor)
making serialization fast. A TensorTable may only contain 1D same-type torch
tensors or strings. It supports only creation from a table and indexing. ]]

function TensorTable:__init( T )
  local n = #T; assert(n>0)
  local isStr = torch.type(T[1])=='string'
  assert(isStr or torch.isTensor(T[1]))
  local c=function(s) return torch.CharTensor(torch.CharStorage():string(s)) end
  if isStr then local S=T; T={}; for i=1,n do T[i]=c(S[i]) end end
  local ms, idx = torch.LongTensor(n), torch.LongTensor(n+1)
  for i=1,n do ms[i]=T[i]:numel() end
  idx[1]=1; idx:narrow(1,2,n):copy(ms); idx=idx:cumsum()
  local type = string.sub(torch.type(T[1]),7,-1)
  local data = torch[type](idx[n+1]-1)
  if isStr then type='string' end
  for i=1,n do if ms[i]>0 then data:sub(idx[i],idx[i+1]-1):copy(T[i]) end end
  if ms:eq(ms[1]):all() and ms[1]>0 then data=data:view(n,ms[1]); idx=nil end
  self.data, self.idx, self.type = data, idx, type
end

function TensorTable:__index__( i )
  if torch.type(i)~='number' then return false end
  local d, idx, type = self.data, self.idx, self.type
  if idx and idx[i]==idx[i+1] then
    if type=='string' then d='' else d=torch[type]() end
  else
    if idx then d=d:sub(idx[i],idx[i+1]-1) else d=d[i] end
    if type=='string' then d=d:clone():storage():string() end
  end
  return d, true
end

--------------------------------------------------------------------------------

--[[ CocoSeg is an efficient data structure for storing COCO segmentations. ]]

function CocoSeg:__init( segs )
  local polys, pIdx, sizes, rles, p, isStr = {}, {}, {}, {}, 0, 0
  for i,seg in pairs(segs) do if seg.size then isStr=seg.counts break end end
  isStr = torch.type(isStr)=='string'
  for i,seg in pairs(segs) do
    pIdx[i], sizes[i] = {}, {}
    if seg.size then
      sizes[i],rles[i] = seg.size,seg.counts
    else
      if isStr then rles[i]='' else rles[i]={} end
      for j=1,#seg do p=p+1; pIdx[i][j],polys[p] = p,seg[j] end
    end
    pIdx[i],sizes[i] = torch.LongTensor(pIdx[i]),torch.IntTensor(sizes[i])
    if not isStr then rles[i]=torch.IntTensor(rles[i]) end
  end
  for i=1,p do polys[i]=torch.DoubleTensor(polys[i]) end
  self.polys, self.pIdx = coco.TensorTable(polys), coco.TensorTable(pIdx)
  self.sizes, self.rles = coco.TensorTable(sizes), coco.TensorTable(rles)
end

function CocoSeg:__index__( i )
  if torch.type(i)~='number' then return false end
  if self.sizes[i]:numel()>0 then
    return {size=self.sizes[i],counts=self.rles[i]}, true
  else
    local ids, polys = self.pIdx[i], {}
    for i=1,ids:numel() do polys[i]=self.polys[ids[i]] end
    return polys, true
  end
end

--------------------------------------------------------------------------------

--[[ CocoApi is the API to the COCO dataset, see main comment for details. ]]

function CocoApi:__init( annFile )
  assert( string.sub(annFile,-4,-1)=='json' and paths.filep(annFile) )
  local torchFile = string.sub(annFile,1,-6) .. '.t7'
  if not paths.filep(torchFile) then self:__convert(annFile,torchFile) end
  local data = torch.load(torchFile)
  self.data, self.inds = data, {}
  for k,v in pairs({images='img',categories='cat',annotations='ann'}) do
    local M = {}; self.inds[v..'IdsMap']=M
    if data[k] then for i=1,data[k].id:size(1) do M[data[k].id[i]]=i end end
  end
end

function CocoApi:__convert( annFile, torchFile )
  print('convert: '..annFile..' --> .t7 [please be patient]')
  local tic = torch.tic()
  -- load data and decode json
  local data = torch.CharStorage(annFile):string()
  data = json.decode(data); collectgarbage()
  -- transpose and flatten each field in the coco data struct
  local convert = {images=true, categories=true, annotations=true}
  for field, d in pairs(data) do if convert[field] then
    print('converting: '..field)
    local n, out = #d, {}
    if n==0 then d,n={d},1 end
    for k,v in pairs(d[1]) do
      local t, isReg = torch.type(v), true
      for i=1,n do isReg=isReg and torch.type(d[i][k])==t end
      if t=='number' and isReg then
        out[k] = torch.DoubleTensor(n)
        for i=1,n do out[k][i]=d[i][k] end
      elseif t=='string' and isReg then
        out[k]={}; for i=1,n do out[k][i]=d[i][k] end
        out[k] = coco.TensorTable(out[k])
      elseif t=='table' and isReg and torch.type(v[1])=='number' then
        out[k]={}; for i=1,n do out[k][i]=torch.DoubleTensor(d[i][k]) end
        out[k] = coco.TensorTable(out[k])
        if not out[k].idx then out[k]=out[k].data end
      else
        out[k]={}; for i=1,n do out[k][i]=d[i][k] end
        if k=='segmentation' then out[k] = coco.CocoSeg(out[k]) end
      end
      collectgarbage()
    end
    if out.id then out.idx=torch.range(1,out.id:size(1)) end
    data[field] = out
    collectgarbage()
  end end
  -- create mapping from cat/img index to anns indices for that cat/img
  print('convert: building indices')
  local makeMap = function( type, type_id )
    if not data[type] or not data.annotations then return nil end
    local invmap, n = {}, data[type].id:size(1)
    for i=1,n do invmap[data[type].id[i]]=i end
    local map = {}; for i=1,n do map[i]={} end
    data.annotations[type_id..'x'] = data.annotations[type_id]:clone()
    for i=1,data.annotations.id:size(1) do
      local id = invmap[data.annotations[type_id][i]]
      data.annotations[type_id..'x'][i] = id
      table.insert(map[id],data.annotations.id[i])
    end
    for i=1,n do map[i]=torch.LongTensor(map[i]) end
    return coco.TensorTable(map)
  end
  data.annIdsPerImg = makeMap('images','image_id')
  data.annIdsPerCat = makeMap('categories','category_id')
  -- save to disk
  torch.save( torchFile, data )
  print(('convert: complete [%.2f s]'):format(torch.toc(tic)))
end

function CocoApi:getAnnIds( filters )
  if not filters then filters = {} end
  if filters.imgId then
    return self.data.annIdsPerImg[self.inds.imgIdsMap[filters.imgId]] or {}
  elseif filters.catId then
    return self.data.annIdsPerCat[self.inds.catIdsMap[filters.catId]] or {}
  else
    return self.data.annotations.id
  end
end

function CocoApi:getCatIds()
  return self.data.categories.id
end

function CocoApi:getImgIds()
  return self.data.images.id
end

function CocoApi:loadAnns( ids )
  return self:__load(self.data.annotations,self.inds.annIdsMap,ids)
end

function CocoApi:loadCats( ids )
  return self:__load(self.data.categories,self.inds.catIdsMap,ids)
end

function CocoApi:loadImgs( ids )
  return self:__load(self.data.images,self.inds.imgIdsMap,ids)
end

function CocoApi:showAnns( img, anns )
  local n, h, w = #anns, img:size(2), img:size(3)
  local MaskApi, clrs = coco.MaskApi, torch.rand(n,3)*.6+.4
  local O = img:clone():contiguous():float()
  if n==0 then anns,n={anns},1 end
  if anns[1].keypoints then for i=1,n do if anns[i].iscrowd==0 then
    local sk, kp, j, k = self:loadCats(anns[i].category_id)[1].skeleton
    kp=anns[i].keypoints; k=kp:size(1); j=torch.range(1,k,3):long(); k=k/3;
    local x,y,v = kp:index(1,j), kp:index(1,j+1), kp:index(1,j+2)
    for _,s in pairs(sk) do if v[s[1]]>0 and v[s[2]]>0 then
      MaskApi.drawLine(O,x[s[1]],y[s[1]],x[s[2]],y[s[2]],.75,clrs[i])
    end end
    for j=1,k do if v[j]==1 then MaskApi.drawCirc(O,x[j],y[j],4,{0,0,0}) end end
    for j=1,k do if v[j]>0 then MaskApi.drawCirc(O,x[j],y[j],3,clrs[i]) end end
  end end end
  if anns[1].segmentation or anns[1].bbox then
    local Rs, alpha = {}, anns[1].keypoints and .25 or .4
    for i=1,n do
      Rs[i]=anns[i].segmentation
      if Rs[i] and #Rs[i]>0 then Rs[i]=MaskApi.frPoly(Rs[i],h,w) end
      if not Rs[i] then Rs[i]=MaskApi.frBbox(anns[i].bbox,h,w)[1] end
    end
    MaskApi.drawMasks(O,MaskApi.decode(Rs),nil,alpha,clrs)
  end
  return O
end

function CocoApi:__load( data, map, ids )
  if not torch.isTensor(ids) then ids=torch.LongTensor({ids}) end
  local out, idx = {}, nil
  for i=1,ids:numel() do
    out[i], idx = {}, map[ids[i]]
    for k,v in pairs(data) do out[i][k]=v[idx] end
  end
  return out
end