logger.py 15.3 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Logging utilities for benchmark.

For collecting local environment metrics like CPU and memory, certain python
packages need be installed. See README for details.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import contextlib
import datetime
import json
import multiprocessing
import numbers
import os
import threading
import uuid

from six.moves import _thread as thread
from absl import flags
import tensorflow as tf
from tensorflow.python.client import device_lib

from tf2_common.utils.logs import cloud_lib

METRIC_LOG_FILE_NAME = "metric.log"
BENCHMARK_RUN_LOG_FILE_NAME = "benchmark_run.log"
_DATE_TIME_FORMAT_PATTERN = "%Y-%m-%dT%H:%M:%S.%fZ"
GCP_TEST_ENV = "GCP"
RUN_STATUS_SUCCESS = "success"
RUN_STATUS_FAILURE = "failure"
RUN_STATUS_RUNNING = "running"


FLAGS = flags.FLAGS

# Don't use it directly. Use get_benchmark_logger to access a logger.
_benchmark_logger = None
_logger_lock = threading.Lock()


def config_benchmark_logger(flag_obj=None):
  """Config the global benchmark logger."""
  _logger_lock.acquire()
  try:
    global _benchmark_logger
    if not flag_obj:
      flag_obj = FLAGS

    if (not hasattr(flag_obj, "benchmark_logger_type") or
        flag_obj.benchmark_logger_type == "BaseBenchmarkLogger"):
      _benchmark_logger = BaseBenchmarkLogger()
    elif flag_obj.benchmark_logger_type == "BenchmarkFileLogger":
      _benchmark_logger = BenchmarkFileLogger(flag_obj.benchmark_log_dir)
    elif flag_obj.benchmark_logger_type == "BenchmarkBigQueryLogger":
      from tf2_common.benchmark import benchmark_uploader as bu  # pylint: disable=g-import-not-at-top
      bq_uploader = bu.BigQueryUploader(gcp_project=flag_obj.gcp_project)
      _benchmark_logger = BenchmarkBigQueryLogger(
          bigquery_uploader=bq_uploader,
          bigquery_data_set=flag_obj.bigquery_data_set,
          bigquery_run_table=flag_obj.bigquery_run_table,
          bigquery_run_status_table=flag_obj.bigquery_run_status_table,
          bigquery_metric_table=flag_obj.bigquery_metric_table,
          run_id=str(uuid.uuid4()))
    else:
      raise ValueError("Unrecognized benchmark_logger_type: %s"
                       % flag_obj.benchmark_logger_type)

  finally:
    _logger_lock.release()
  return _benchmark_logger


def get_benchmark_logger():
  if not _benchmark_logger:
    config_benchmark_logger()
  return _benchmark_logger


@contextlib.contextmanager
def benchmark_context(flag_obj):
  """Context of benchmark, which will update status of the run accordingly."""
  benchmark_logger = config_benchmark_logger(flag_obj)
  try:
    yield
    benchmark_logger.on_finish(RUN_STATUS_SUCCESS)
  except Exception:  # pylint: disable=broad-except
    # Catch all the exception, update the run status to be failure, and re-raise
    benchmark_logger.on_finish(RUN_STATUS_FAILURE)
    raise


class BaseBenchmarkLogger(object):
  """Class to log the benchmark information to STDOUT."""

  def log_evaluation_result(self, eval_results):
    """Log the evaluation result.

    The evaluate result is a dictionary that contains metrics defined in
    model_fn. It also contains a entry for global_step which contains the value
    of the global step when evaluation was performed.

    Args:
      eval_results: dict, the result of evaluate.
    """
    if not isinstance(eval_results, dict):
      tf.compat.v1.logging.warning(
          "eval_results should be dictionary for logging. Got %s",
          type(eval_results))
      return
    global_step = eval_results[tf.compat.v1.GraphKeys.GLOBAL_STEP]
    for key in sorted(eval_results):
      if key != tf.compat.v1.GraphKeys.GLOBAL_STEP:
        self.log_metric(key, eval_results[key], global_step=global_step)

  def log_metric(self, name, value, unit=None, global_step=None, extras=None):
    """Log the benchmark metric information to local file.

    Currently the logging is done in a synchronized way. This should be updated
    to log asynchronously.

    Args:
      name: string, the name of the metric to log.
      value: number, the value of the metric. The value will not be logged if it
        is not a number type.
      unit: string, the unit of the metric, E.g "image per second".
      global_step: int, the global_step when the metric is logged.
      extras: map of string:string, the extra information about the metric.
    """
    metric = _process_metric_to_json(name, value, unit, global_step, extras)
    if metric:
      tf.compat.v1.logging.info("Benchmark metric: %s", metric)

  def log_run_info(self, model_name, dataset_name, run_params, test_id=None):
    tf.compat.v1.logging.info(
        "Benchmark run: %s", _gather_run_info(model_name, dataset_name,
                                              run_params, test_id))

  def on_finish(self, status):
    pass


class BenchmarkFileLogger(BaseBenchmarkLogger):
  """Class to log the benchmark information to local disk."""

  def __init__(self, logging_dir):
    super(BenchmarkFileLogger, self).__init__()
    self._logging_dir = logging_dir
    if not tf.io.gfile.isdir(self._logging_dir):
      tf.io.gfile.makedirs(self._logging_dir)
    self._metric_file_handler = tf.io.gfile.GFile(
        os.path.join(self._logging_dir, METRIC_LOG_FILE_NAME), "a")

  def log_metric(self, name, value, unit=None, global_step=None, extras=None):
    """Log the benchmark metric information to local file.

    Currently the logging is done in a synchronized way. This should be updated
    to log asynchronously.

    Args:
      name: string, the name of the metric to log.
      value: number, the value of the metric. The value will not be logged if it
        is not a number type.
      unit: string, the unit of the metric, E.g "image per second".
      global_step: int, the global_step when the metric is logged.
      extras: map of string:string, the extra information about the metric.
    """
    metric = _process_metric_to_json(name, value, unit, global_step, extras)
    if metric:
      try:
        json.dump(metric, self._metric_file_handler)
        self._metric_file_handler.write("\n")
        self._metric_file_handler.flush()
      except (TypeError, ValueError) as e:
        tf.compat.v1.logging.warning(
            "Failed to dump metric to log file: name %s, value %s, error %s",
            name, value, e)

  def log_run_info(self, model_name, dataset_name, run_params, test_id=None):
    """Collect most of the TF runtime information for the local env.

    The schema of the run info follows official/benchmark/datastore/schema.

    Args:
      model_name: string, the name of the model.
      dataset_name: string, the name of dataset for training and evaluation.
      run_params: dict, the dictionary of parameters for the run, it could
        include hyperparameters or other params that are important for the run.
      test_id: string, the unique name of the test run by the combination of key
        parameters, eg batch size, num of GPU. It is hardware independent.
    """
    run_info = _gather_run_info(model_name, dataset_name, run_params, test_id)

    with tf.io.gfile.GFile(os.path.join(
        self._logging_dir, BENCHMARK_RUN_LOG_FILE_NAME), "w") as f:
      try:
        json.dump(run_info, f)
        f.write("\n")
      except (TypeError, ValueError) as e:
        tf.compat.v1.logging.warning(
            "Failed to dump benchmark run info to log file: %s", e)

  def on_finish(self, status):
    self._metric_file_handler.flush()
    self._metric_file_handler.close()


class BenchmarkBigQueryLogger(BaseBenchmarkLogger):
  """Class to log the benchmark information to BigQuery data store."""

  def __init__(self,
               bigquery_uploader,
               bigquery_data_set,
               bigquery_run_table,
               bigquery_run_status_table,
               bigquery_metric_table,
               run_id):
    super(BenchmarkBigQueryLogger, self).__init__()
    self._bigquery_uploader = bigquery_uploader
    self._bigquery_data_set = bigquery_data_set
    self._bigquery_run_table = bigquery_run_table
    self._bigquery_run_status_table = bigquery_run_status_table
    self._bigquery_metric_table = bigquery_metric_table
    self._run_id = run_id

  def log_metric(self, name, value, unit=None, global_step=None, extras=None):
    """Log the benchmark metric information to bigquery.

    Args:
      name: string, the name of the metric to log.
      value: number, the value of the metric. The value will not be logged if it
        is not a number type.
      unit: string, the unit of the metric, E.g "image per second".
      global_step: int, the global_step when the metric is logged.
      extras: map of string:string, the extra information about the metric.
    """
    metric = _process_metric_to_json(name, value, unit, global_step, extras)
    if metric:
      # Starting new thread for bigquery upload in case it might take long time
      # and impact the benchmark and performance measurement. Starting a new
      # thread might have potential performance impact for model that run on
      # CPU.
      thread.start_new_thread(
          self._bigquery_uploader.upload_benchmark_metric_json,
          (self._bigquery_data_set,
           self._bigquery_metric_table,
           self._run_id,
           [metric]))

  def log_run_info(self, model_name, dataset_name, run_params, test_id=None):
    """Collect most of the TF runtime information for the local env.

    The schema of the run info follows official/benchmark/datastore/schema.

    Args:
      model_name: string, the name of the model.
      dataset_name: string, the name of dataset for training and evaluation.
      run_params: dict, the dictionary of parameters for the run, it could
        include hyperparameters or other params that are important for the run.
      test_id: string, the unique name of the test run by the combination of key
        parameters, eg batch size, num of GPU. It is hardware independent.
    """
    run_info = _gather_run_info(model_name, dataset_name, run_params, test_id)
    # Starting new thread for bigquery upload in case it might take long time
    # and impact the benchmark and performance measurement. Starting a new
    # thread might have potential performance impact for model that run on CPU.
    thread.start_new_thread(
        self._bigquery_uploader.upload_benchmark_run_json,
        (self._bigquery_data_set,
         self._bigquery_run_table,
         self._run_id,
         run_info))
    thread.start_new_thread(
        self._bigquery_uploader.insert_run_status,
        (self._bigquery_data_set,
         self._bigquery_run_status_table,
         self._run_id,
         RUN_STATUS_RUNNING))

  def on_finish(self, status):
    self._bigquery_uploader.update_run_status(
        self._bigquery_data_set,
        self._bigquery_run_status_table,
        self._run_id,
        status)


def _gather_run_info(model_name, dataset_name, run_params, test_id):
  """Collect the benchmark run information for the local environment."""
  run_info = {
      "model_name": model_name,
      "dataset": {"name": dataset_name},
      "machine_config": {},
      "test_id": test_id,
      "run_date": datetime.datetime.utcnow().strftime(
          _DATE_TIME_FORMAT_PATTERN)}
  _collect_tensorflow_info(run_info)
  _collect_tensorflow_environment_variables(run_info)
  _collect_run_params(run_info, run_params)
  _collect_cpu_info(run_info)
  _collect_memory_info(run_info)
  _collect_test_environment(run_info)
  return run_info


def _process_metric_to_json(
    name, value, unit=None, global_step=None, extras=None):
  """Validate the metric data and generate JSON for insert."""
  if not isinstance(value, numbers.Number):
    tf.compat.v1.logging.warning(
        "Metric value to log should be a number. Got %s", type(value))
    return None

  extras = _convert_to_json_dict(extras)
  return {
      "name": name,
      "value": float(value),
      "unit": unit,
      "global_step": global_step,
      "timestamp": datetime.datetime.utcnow().strftime(
          _DATE_TIME_FORMAT_PATTERN),
      "extras": extras}


def _collect_tensorflow_info(run_info):
  run_info["tensorflow_version"] = {
      "version": tf.version.VERSION, "git_hash": tf.version.GIT_VERSION}


def _collect_run_params(run_info, run_params):
  """Log the parameter information for the benchmark run."""
  def process_param(name, value):
    type_check = {
        str: {"name": name, "string_value": value},
        int: {"name": name, "long_value": value},
        bool: {"name": name, "bool_value": str(value)},
        float: {"name": name, "float_value": value},
    }
    return type_check.get(type(value),
                          {"name": name, "string_value": str(value)})
  if run_params:
    run_info["run_parameters"] = [
        process_param(k, v) for k, v in sorted(run_params.items())]


def _collect_tensorflow_environment_variables(run_info):
  run_info["tensorflow_environment_variables"] = [
      {"name": k, "value": v}
      for k, v in sorted(os.environ.items()) if k.startswith("TF_")]


# The following code is mirrored from tensorflow/tools/test/system_info_lib
# which is not exposed for import.
def _collect_cpu_info(run_info):
  """Collect the CPU information for the local environment."""
  cpu_info = {}

  cpu_info["num_cores"] = multiprocessing.cpu_count()

  try:
    # Note: cpuinfo is not installed in the TensorFlow OSS tree.
    # It is installable via pip.
    import cpuinfo    # pylint: disable=g-import-not-at-top

    info = cpuinfo.get_cpu_info()
    cpu_info["cpu_info"] = info["brand"]
    cpu_info["mhz_per_cpu"] = info["hz_advertised_raw"][0] / 1.0e6

    run_info["machine_config"]["cpu_info"] = cpu_info
  except ImportError:
    tf.compat.v1.logging.warn(
        "'cpuinfo' not imported. CPU info will not be logged.")


def _collect_memory_info(run_info):
  try:
    # Note: psutil is not installed in the TensorFlow OSS tree.
    # It is installable via pip.
    import psutil   # pylint: disable=g-import-not-at-top
    vmem = psutil.virtual_memory()
    run_info["machine_config"]["memory_total"] = vmem.total
    run_info["machine_config"]["memory_available"] = vmem.available
  except ImportError:
    tf.compat.v1.logging.warn(
        "'psutil' not imported. Memory info will not be logged.")


def _collect_test_environment(run_info):
  """Detect the local environment, eg GCE, AWS or DGX, etc."""
  if cloud_lib.on_gcp():
    run_info["test_environment"] = GCP_TEST_ENV
  # TODO(scottzhu): Add more testing env detection for other platform


def _parse_gpu_model(physical_device_desc):
  # Assume all the GPU connected are same model
  for kv in physical_device_desc.split(","):
    k, _, v = kv.partition(":")
    if k.strip() == "name":
      return v.strip()
  return None


def _convert_to_json_dict(input_dict):
  if input_dict:
    return [{"name": k, "value": v} for k, v in sorted(input_dict.items())]
  else:
    return []