optimizer_v2modified.py 6.91 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Modified optimizer_v2 implementation enabling XLA across variable updates."""


from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from tensorflow.python.distribute import distribution_strategy_context as distribute_ctx
from tensorflow.python.distribute import parameter_server_strategy
from tensorflow.python.framework import ops
from tensorflow.python.framework import dtypes
from tensorflow.python.keras import backend
from tensorflow.python.keras.optimizer_v2 import optimizer_v2
from tensorflow.python.keras.optimizer_v2 import utils as optimizer_utils
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import variables as tf_variables

class OptimizerV2Modified(optimizer_v2.OptimizerV2):
  """This is a subclass optimizer that performs variable updates in
  Distribution Strategy replica context. OptimizerV2 base class is currently
  under refactoring and will have better support of this.

  Please refer to optimizer_v2.OptimizerV2 for more details regarding the APIs.
  """

  def __init__(self, name, use_experimental_compile=False, **kwargs):
    """Create a new Optimizer.

    Args:
      name: Optional name prefix for variables and ops created by the optimizer.
      use_experimental_compile: when set to True, use experimental_compile on
        the _distributed_apply function.
    """
    super(OptimizerV2Modified, self).__init__(name=name, **kwargs)
    self.use_experimental_compile = use_experimental_compile

  def apply_gradients(self,
                      grads_and_vars,
                      name=None,
                      experimental_aggregate_gradients=True):
    """Apply gradients to variables.

    Only the last two lines are different from optimizer_v2.OptimizerV2.

    Args:
      grads_and_vars: List of (gradient, variable) pairs.
      name: Optional name for the returned operation. Default to the name passed
        to the `Optimizer` constructor.
      experimental_aggregate_gradients: Whether to sum gradients from different
        replicas in the presense of `tf.distribute.Strategy`. If False, it's
        user responsibility to aggregate the gradients. Default to True.

    Returns:
      An `Operation` that applies the specified gradients. The `iterations`
      will be automatically increased by 1.

    Raises:
      TypeError: If `grads_and_vars` is malformed.
      ValueError: If none of the variables have gradients.
      RuntimeError: If called in cross-replica context.
    """
    # pylint: disable=protected-access
    grads_and_vars = optimizer_utils.filter_empty_gradients(grads_and_vars)
    # pylint: enable=protected-access
    var_list = [v for (_, v) in grads_and_vars]

    with ops.name_scope_v2(self._name):
      # Create iteration if necessary.
      with ops.init_scope():
        self._create_all_weights(var_list)

      if not grads_and_vars:
        # Distribution strategy does not support reducing an empty list of
        # gradients
        return control_flow_ops.no_op()

      if distribute_ctx.in_cross_replica_context():
        raise RuntimeError(
            "`apply_gradients() cannot be called in cross-replica context. "
            "Use `tf.distribute.Strategy.run` to enter replica "
            "context.")

      strategy = distribute_ctx.get_strategy()
      if (not experimental_aggregate_gradients and strategy and isinstance(
          strategy.extended,
          parameter_server_strategy.ParameterServerStrategyExtended)):
        raise NotImplementedError(
            "`experimental_aggregate_gradients=False is not supported for "
            "ParameterServerStrategy and CentralStorageStrategy")

      apply_state = self._prepare(var_list)
      if experimental_aggregate_gradients:
        grads_and_vars = self._transform_unaggregated_gradients(grads_and_vars)
        grads_and_vars = self._aggregate_gradients(grads_and_vars)
      grads_and_vars = self._transform_gradients(grads_and_vars)

      self._distributed_apply(None, grads_and_vars, name, apply_state)
      return self._iterations.assign_add(1, read_value=False)

  def _distributed_apply_org(self, distribution, grads_and_vars, name, apply_state):
    """`apply_gradients` using a `DistributionStrategy`.

    This is the _distributed_apply function in optimizer_v2,
    returning a list of ops.
    """

    def apply_grad_to_update_var(var, grad):
      """Apply gradient to variable."""
      if isinstance(var, ops.Tensor):
        raise NotImplementedError("Trying to update a Tensor ", var)

      apply_kwargs = {}
      if isinstance(grad, ops.IndexedSlices):
        if var.constraint is not None:
          raise RuntimeError(
              "Cannot use a constraint function on a sparse variable.")
        if "apply_state" in self._sparse_apply_args:
          apply_kwargs["apply_state"] = apply_state
        return self._resource_apply_sparse_duplicate_indices(
            grad.values, var, grad.indices, **apply_kwargs)

      if "apply_state" in self._dense_apply_args:
        apply_kwargs["apply_state"] = apply_state
      update_op = self._resource_apply_dense(grad, var, **apply_kwargs)
      if var.constraint is not None:
        with ops.control_dependencies([update_op]):
          return var.assign(var.constraint(var))
      else:
        return update_op

    update_ops = []
    with ops.name_scope(name or self._name, skip_on_eager=True):
      for grad, var in grads_and_vars:
        update_ops.append(apply_grad_to_update_var(var, grad))
      return control_flow_ops.group(*update_ops)

  def _distributed_apply(self, distribution, grads_and_vars, name, apply_state):
    if self.use_experimental_compile:
      self._distributed_apply_compile(distribution, grads_and_vars, name,
                                      apply_state)
    else:
      self._distributed_apply_org(distribution, grads_and_vars, name,
                                  apply_state)

  @tf.function(experimental_compile=False)
  def _distributed_apply_compile(self, distribution, grads_and_vars, name,
                                 apply_state):
    """This is a warpper, to return a tensor, making tf.func() happy."""
    self._distributed_apply_org(distribution, grads_and_vars,
                                name, apply_state)
    return tf.ones((), dtype=tf.bool)