controller.py 15.2 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A light weight utilities to train TF2 models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

from absl import logging

import tensorflow as tf
from typing import Callable, Dict, Optional, Text

from tf2_common.training import utils


class Controller(object):
  """Class that facilitates training and evaluation of models."""

  def __init__(
      self,
      strategy: Optional[tf.distribute.Strategy] = None,
      train_fn: Optional[Callable[[tf.Tensor],
                                  Optional[Dict[Text, tf.Tensor]]]] = None,
      eval_fn: Optional[Callable[[tf.Tensor],
                                 Optional[Dict[Text, tf.Tensor]]]] = None,
      warmup_fn: Optional[Callable[[tf.Tensor],
                                   Optional[Dict[Text, tf.Tensor]]]] = None,
      global_step: Optional[tf.Variable] = None,
      # Train related
      train_steps: Optional[int] = None,
      steps_per_loop: Optional[int] = None,
      summary_dir: Optional[Text] = None,
      checkpoint_manager: Optional[tf.train.CheckpointManager] = None,
      # summary related
      summary_interval: Optional[int] = None,
      # Evaluation related
      eval_summary_dir: Optional[Text] = None,
      eval_steps: Optional[int] = None,
      eval_interval: Optional[int] = None,
      eval_offset: Optional[int] = 0,
      # Warmup related
      device_warmup_steps: Optional[int] = None):
    """Constructs a `Controller` instance.

    Args:
      strategy: An instance of `tf.distribute.Strategy`.
      train_fn: A callable defined as `def train_fn(num_steps)`, which
        `num_steps` indicates the number of steps to run for each loop.
      eval_fn: A callable defined as `def eval_fn(num_steps)`, which `num_steps`
        indicates the number of steps for one evaluation.
      warmup_fn: A callable defined as `def warmup_fn(num_steps)`, which
        `num_steps` indicates the number of steps to run for each loop.
      global_step: An integer `tf.Variable` indicating the global training step
        number. Usually this can be obtained from `iterations` property of the
        model's optimizer (e.g. `self.optimizer.iterations`), or users can
        create their own global step variable as well. If the users create their
        own global step variable, it is recommended to create the `tf.Variable`
        inside strategy scope, and with
        `aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA`.
      train_steps: The total (maximum) number of training steps to perform.
      steps_per_loop: The number of steps to run in each "inner loop" of
        training (passed to the `num_steps` parameter of `train_fn`).
      summary_dir: The directory to restore and write checkpoints and summaries.
        If None, it will be set to `checkpoint_manager.directory`.
      checkpoint_manager: An instance of `tf.train.CheckpointManager`.
      summary_interval: Step interval for training summaries. Note that this
        argument only applies to the summaries outside the training loop. If the
        value is None, then training summaries are not enabled.
      eval_summary_dir: The directory to write eval summaries. If None, no eval
        summary will be written.
      eval_steps: Number of steps to run evaluation.
      eval_interval: Step interval for evaluation. If None, will skip
        evaluation. Note that evaluation only happens outside the training loop,
        which the loop iteration is specify by `steps_per_loop` parameter.
      eval_offset: Step number of the first evaluation.
      device_warmup_steps: The number of steps to run for warmup.

    Raises:
      ValueError: If both `train_fn` and `eval_fn` are None.
      ValueError: If `train_fn` is not None and `train_steps` is None.
      ValueError: If `steps_per_loop` is None when `train_fn` is provided.
      ValueError: If `steps_per_loop` is not a positive integer.
    """
    if train_fn is None and eval_fn is None:
      raise ValueError("`train_fn` and `eval_fn` should not both be None")

    # TODO(rxsang): Support training until exhaustion by passing
    # `train_steps=-1`. Currently it cannot be supported with a host training
    # loop because break statements are not supported with distributed dataset.
    if train_fn is not None and train_steps is None:
      raise ValueError("`train_steps` is required when `train_fn` is provided.")
    if train_fn is not None and steps_per_loop is None:
      raise ValueError("`steps_per_loop` is required when `train_fn is "
                       "provided.")
    if not isinstance(steps_per_loop, int) or steps_per_loop < 1:
      raise ValueError("`steps_per_loop` should be a positive integer")
    if summary_interval is not None and summary_interval <= 0:
      raise ValueError("`summary_interval` should be larger than 0")

    self.strategy = strategy or tf.distribute.get_strategy()

    self.train_fn = train_fn
    self.eval_fn = eval_fn
    self.warmup_fn = warmup_fn
    self.global_step = global_step

    self.train_steps = train_steps

    self.steps_per_loop = steps_per_loop
    self.device_warmup_steps = device_warmup_steps

    self.summary_dir = summary_dir or checkpoint_manager.directory
    self.checkpoint_manager = checkpoint_manager

    self.summary_interval = summary_interval
    summary_writer = tf.summary.create_file_writer(
        self.summary_dir) if self.summary_interval else None
    # TODO(rxsang): Consider pass SummaryManager directly into Controller for
    # maximum customizability.
    self.summary_manager = utils.SummaryManager(
        summary_writer,
        tf.summary.scalar,
        global_step=self.global_step,
        summary_interval=self.summary_interval)
    if self.global_step:
      tf.summary.experimental.set_step(self.global_step)

    eval_summary_writer = tf.summary.create_file_writer(
        eval_summary_dir) if eval_summary_dir else None
    self.eval_summary_manager = utils.SummaryManager(
        eval_summary_writer, tf.summary.scalar, global_step=self.global_step)

    self.eval_steps = eval_steps
    self.eval_interval = eval_interval
    self.eval_offset = eval_offset

    # Restore Model if needed.
    if self.checkpoint_manager is not None:
      model_restored = self._restore_model()
      if not model_restored and self.checkpoint_manager.checkpoint_interval:
        # If the model is not restored from a checkpoint, save an initial
        # checkpoint.
        ckpt_path = self.checkpoint_manager.save(
            checkpoint_number=self.global_step)
        logging.info("Saved checkpoins in %s", ckpt_path)

    # Create and initialize the interval triggers.
    self.eval_trigger = utils.IntervalTrigger(self.eval_interval,
                                              self.eval_offset)

  def _restore_model(self, checkpoint_path=None):
    """Restore or initialize the model.

    Args:
      checkpoint_path: An optional string indicates the checkpoint path to
        restore. If None, will restore from `self.checkpoint_manager`.

    Returns:
      True if the latest checkpoint is found or restored. Otherwise False.
    """
    with self.strategy.scope():
      # Checkpoint restoring should be inside scope. b/139450638
      if checkpoint_path is not None:
        self.checkpoint_manager.checkpoint.restore(checkpoint_path)
        return True
      return self.checkpoint_manager.restore_or_initialize()

  def _evaluate_once(self, current_step):
    """Runs the evaluation once."""
    logging.info("Start evaluation at step: %s", current_step)

    with self.eval_summary_manager.summary_writer.as_default():
      eval_outputs = self.eval_fn(self.eval_steps)

    if eval_outputs:
      eval_outputs = tf.nest.map_structure(
          lambda x: (x if isinstance(x, (float, bool)) else x.numpy()),
          eval_outputs)

    info = "step: {}        evaluation metric: {}".format(
        current_step, eval_outputs)
    self._log_info(info)

    self.eval_summary_manager.write_summaries(eval_outputs)
    if "continue_training" in eval_outputs.keys():
      return eval_outputs["continue_training"]
    else:
      return True

  def _maybe_save_checkpoints(self, current_step, force_trigger=False):
    if self.checkpoint_manager.checkpoint_interval:
      ckpt_path = self.checkpoint_manager.save(
          checkpoint_number=current_step, check_interval=force_trigger)
      if ckpt_path is not None:
        logging.info("Saved checkpoins in %s", ckpt_path)

  def _maybe_evaluate(self, current_step, force_trigger=False):
    if self.eval_trigger(current_step, force_trigger):
      return self._evaluate_once(current_step)
    else:
      return True

  def _log_info(self, message):
    """Logs `message` to the `info` log, and also prints to stdout."""
    logging.info(message)
    print(message)

  def train(self, evaluate=True):
    """Runs the training, with optional evaluation.

    This handles evaluation, gathering summaries, and saving checkpoints.

    Args:
      evaluate: A boolean indicates whether to perform evaluation during
        training.

    Raises:
      RuntimeError: If `global_step` is not updated correctly in `train_fn`.
    """
    if self.train_fn is None:
      raise ValueError("`self.train_fn` is required when calling `train` "
                       "method.")
    if self.global_step is None:
      raise ValueError("`self.global_step` is required when calling `train` "
                       "method.")
    if evaluate and self.eval_fn is None:
      raise ValueError("`self.eval_fn` is required when calling `train` method "
                       "with `evaluate=True`")

    step_timer = _StepTimer(self.global_step)
    current_step = self.global_step.numpy()
    logging.info("Train at step %s of %s", current_step, self.train_steps)
    while current_step < self.train_steps:
      # Calculates steps to run for the next train loop.
      steps_per_loop = min(self.train_steps - current_step, self.steps_per_loop)
      logging.info("Entering training loop with %s steps, at step %s of %s",
                   steps_per_loop, current_step, self.train_steps)
      current_step += steps_per_loop
      steps_per_loop = tf.convert_to_tensor(steps_per_loop, dtype=tf.int32)

      with self.summary_manager.summary_writer.as_default():
        train_outputs = self.train_fn(steps_per_loop)

      # Updates and verifies the current step after a training loop finishes.
      if current_step != self.global_step.numpy():
        logging.warning("`self.train_fn` is not updating `global_step` "
                        "correctly, expected: %s, actual: %s",
                        current_step, self.global_step.numpy())

      # Print information like metrics and steps_per_second after a training
      # loop.
      if train_outputs:
        train_outputs = tf.nest.map_structure(
            lambda x: x.numpy(), train_outputs)
      steps_per_second = step_timer.steps_per_second()
      info = "step: {}        steps_per_second: {:.2f}        {}".format(
          current_step, steps_per_second, train_outputs)
      self._log_info(info)

      train_outputs = train_outputs or {}
      train_outputs["steps_per_second"] = steps_per_second
      self.summary_manager.write_summaries(train_outputs)

      self._maybe_save_checkpoints(current_step)

      if evaluate:
        continue_training = self._maybe_evaluate(current_step)
        if not continue_training:
          break

    self.summary_manager.write_summaries(train_outputs, always_write=True)
    self._maybe_save_checkpoints(current_step, force_trigger=True)
    if evaluate:
      self._maybe_evaluate(current_step, force_trigger=True)

  def evaluate(self, continuous=False, timeout_fn=None):
    """Runs the evaluation.

    Args:
      continuous: If `True`, will continously monitor the checkpoint directory
        to evaluate on the latest checkpoint. If `False`, will do the evaluation
        once.
      timeout_fn: Optional callable to call after a timeout. If the function
        returns True, then it means that no new checkpoints will be generated
        and the iterator will exit.

    Raises:
      ValueError: If no checkpoint found in `self.checkpoint_manager.directory`.
    """
    if self.eval_fn is None:
      raise ValueError("`self.eval_fn` should not be None to call "
                       "`evaluate()` method.")

    if not continuous and timeout_fn is not None:
      raise ValueError("`timeout_fn` can be only passed when `continuous` is "
                       "True")

    if continuous:
      for checkpoint_path in tf.train.checkpoints_iterator(
          self.checkpoint_manager.directory, timeout_fn=timeout_fn):
        self._restore_model(checkpoint_path)
        self._evaluate_once(self.global_step.numpy())
      return

    latest_checkpoint = self.checkpoint_manager.latest_checkpoint
    if not latest_checkpoint:
      raise ValueError("no checkpoint found in dir %s" %
                       self.checkpoint_manager.directory)
    self._restore_model()
    self._evaluate_once(self.global_step.numpy())

  def warmup(self):
    """Runs device warmup.

    This handles running a training loop on dummy data to move TF function
    tracing and XLA compilation outside of the training loop.

    """
    if self.global_step is None:
      raise ValueError("`self.global_step` is required when calling `warmup` "
                       "method.")

    step_timer = _StepTimer(self.global_step)
    current_step = self.global_step.numpy()
    logging.info("Warmup at step %s of %s", current_step,
                 self.device_warmup_steps)
    while current_step < self.device_warmup_steps:
      # Calculates steps to run for the next train loop.
      steps_per_loop = self.device_warmup_steps
      logging.info("Entering warmup loop with %s steps, at step %s of %s",
                   steps_per_loop, current_step, self.device_warmup_steps)
      current_step += steps_per_loop
      steps_per_loop = tf.convert_to_tensor(steps_per_loop, dtype=tf.int32)

      with self.summary_manager.summary_writer.as_default():
        self.warmup_fn(steps_per_loop)

      steps_per_second = step_timer.steps_per_second()
      info = "step: {}        steps_per_second: {:.2f}".format(
          current_step, steps_per_second)
      self._log_info(info)


class _StepTimer(object):
  """Utility class for measuring steps/second."""

  def __init__(self, step):
    self.step = step
    self.start()

  def start(self):
    self.last_iteration = self.step.numpy()
    self.last_time = time.time()

  def steps_per_second(self, restart=True):
    value = ((self.step.numpy() - self.last_iteration) /
             (time.time() - self.last_time))
    if restart:
      self.start()
    return value