resnet_ctl_imagenet_main.py.multinode 10.9 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a ResNet model on the ImageNet dataset using custom training loops."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
import hostlist
import os
import re 
import json
from tf2_common.modeling import performance
from tf2_common.training import controller
from tf2_common.utils.flags import core as flags_core
from tf2_common.utils.logs import logger
from tf2_common.utils.misc import distribution_utils
from tf2_common.utils.misc import keras_utils
from tf2_common.utils.misc import model_helpers
from tf2_common.utils.mlp_log import mlp_log
import common
import imagenet_preprocessing
import resnet_runnable

flags.DEFINE_boolean(name='use_tf_function', default=True,
                     help='Wrap the train and test step inside a '
                     'tf.function.')
flags.DEFINE_boolean(name='single_l2_loss_op', default=False,
                     help='Calculate L2_loss on concatenated weights, '
                     'instead of using Keras per-layer L2 loss.')
flags.DEFINE_boolean(name='cache_decoded_image', default=False,
                     help='Whether or not to cache decoded images in the '
                     'input pipeline. If this flag and `cache` is enabled, '
                     'then TFExample protos will be parsed and then cached '
                     'which reduces the load on hosts.')
flags.DEFINE_boolean(name='enable_device_warmup', default=False,
                     help='Whether or not to enable device warmup. This '
                     'includes training on dummy data and enabling graph/XLA '
                     'compilation before run_start.')
flags.DEFINE_integer(name='device_warmup_steps', default=1,
                     help='The number of steps to apply for device warmup.')
flags.DEFINE_integer(name='num_replicas', default=32,
                     help='The number of TPU cores to use, '
                     'for log printout only.')


def build_stats(runnable, time_callback):
  """Normalizes and returns dictionary of stats.

  Args:
    runnable: The module containing all the training and evaluation metrics.
    time_callback: Time tracking callback instance.

  Returns:
    Dictionary of normalized results.
  """
  stats = {}

  if not runnable.flags_obj.skip_eval:
    if runnable.test_loss:
      stats['eval_loss'] = runnable.test_loss.result().numpy()
    if runnable.test_accuracy:
      stats['eval_acc'] = runnable.test_accuracy.result().numpy()

    if runnable.train_loss:
      stats['train_loss'] = runnable.train_loss.result().numpy()
    if runnable.train_accuracy:
      stats['train_acc'] = runnable.train_accuracy.result().numpy()

  if time_callback:
    timestamp_log = time_callback.timestamp_log
    stats['step_timestamp_log'] = timestamp_log
    stats['train_finish_time'] = time_callback.train_finish_time
    if time_callback.epoch_runtime_log:
      stats['avg_exp_per_second'] = time_callback.average_examples_per_second

  return stats


def _steps_to_run(steps_in_current_epoch, steps_per_epoch, steps_per_loop):
  """Calculates steps to run on device."""
  if steps_per_loop <= 0:
    raise ValueError('steps_per_loop should be positive integer.')
  if steps_per_loop == 1:
    return steps_per_loop
  return min(steps_per_loop, steps_per_epoch - steps_in_current_epoch)


def run(flags_obj):
  """Run ResNet ImageNet training and eval loop using custom training loops.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.

  Returns:
    Dictionary of training and eval stats.
  """
  mlp_log.mlperf_print('cache_clear', True)
  mlp_log.mlperf_print('init_start', None)
  mlp_log.mlperf_print('submission_benchmark', 'resnet')
  mlp_log.mlperf_print('submission_division', 'closed')
  mlp_log.mlperf_print('submission_org', 'google')
  mlp_log.mlperf_print(
      'submission_platform', 'tpu-v3-{}'.format(flags_obj.num_replicas)
      if flags_obj.tpu else 'gpu-v100-{}'.format(flags_obj.num_gpus))
  mlp_log.mlperf_print('submission_status', 'cloud')
 
  common.print_flags(flags_obj)

  num_index = flags_obj.task_index
  print('num_index',num_index)
  worker = []
  nodelist = os.environ["SLURM_JOB_NODELIST"]
  nodename = os.environ["SLURMD_NODENAME"]
  nodelist = hostlist.expand_hostlist(nodelist) 
  print('print nodelist2',nodelist)
  num_nodes = int(os.getenv("SLURM_JOB_NUM_NODES"))
  port_number =40000
  worker_nodes = [node for i, node in enumerate(nodelist) if i >= 0 ]
#  print('print worker_nodes',worker_nodes)
  for node in worker_nodes:
      for index in range(4):
          print('node',node)
          worker_sockets = ":".join([node, str(port_number + index )])
          worker.append(worker_sockets)
  os.environ['TF_CONFIG'] = json.dumps({
    'cluster': {
        'worker': worker
    },
    'task': {'type': 'worker', 'index': num_index}
  })

  
  print({
    'cluster': {
        'worker': worker
    },
    'task': {'type': 'worker', 'index': num_index}
  })
  keras_utils.set_session_config(
      enable_eager=flags_obj.enable_eager,
      enable_xla=flags_obj.enable_xla)
  performance.set_mixed_precision_policy(flags_core.get_tf_dtype(flags_obj))

  if tf.config.list_physical_devices('GPU'):
    if flags_obj.tf_gpu_thread_mode:
      datasets_num_private_threads = keras_utils.set_gpu_thread_mode_and_count(
          per_gpu_thread_count=flags_obj.per_gpu_thread_count,
          gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
          num_gpus=flags_obj.num_gpus)
      if not flags_obj.datasets_num_private_threads:
        flags_obj.datasets_num_private_threads = datasets_num_private_threads
    common.set_cudnn_batchnorm_mode()

  # TODO(anj-s): Set data_format without using Keras.
  data_format = flags_obj.data_format
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
  tf.keras.backend.set_image_data_format(data_format)
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=flags_obj.distribution_strategy,
      num_gpus=flags_obj.num_gpus,
      all_reduce_alg=flags_obj.all_reduce_alg,
      num_packs=flags_obj.num_packs,
      tpu_address=flags_obj.tpu,
      tpu_zone=flags_obj.tpu_zone if flags_obj.tpu else None)
#  strategy = tf.distribute.get_strategy()
#  print('after distribution number of replicas : {}'.format(
#              strategy.num_replicas_in_sync))

  mlp_log.mlperf_print('global_batch_size', flags_obj.batch_size)
  mlp_log.mlperf_print('train_samples',
                       imagenet_preprocessing.NUM_IMAGES['train'])
  mlp_log.mlperf_print('eval_samples',
                       imagenet_preprocessing.NUM_IMAGES['validation'])
  mlp_log.mlperf_print(
      'model_bn_span',
      int(flags_obj.batch_size /
          (flags_obj.num_replicas if flags_obj.tpu else flags_obj.num_gpus)))

  per_epoch_steps, train_epochs = common.get_num_train_iterations(flags_obj)
  eval_steps = common.get_num_eval_steps(flags_obj)
  steps_per_loop = min(flags_obj.steps_per_loop, per_epoch_steps)

  logging.info(
      'Training %d epochs, each epoch has %d steps, '
      'total steps: %d; Eval %d steps', train_epochs, per_epoch_steps,
      train_epochs * per_epoch_steps, eval_steps)

  time_callback = keras_utils.TimeHistory(
      flags_obj.batch_size,
      flags_obj.log_steps,
      logdir=flags_obj.model_dir if flags_obj.enable_tensorboard else None)
  with distribution_utils.get_strategy_scope(strategy):
    runnable = resnet_runnable.ResnetRunnable(flags_obj, time_callback)

  eval_interval = (
      flags_obj.epochs_between_evals *
      per_epoch_steps if not flags_obj.skip_eval else None)
  eval_offset = (
      flags_obj.eval_offset_epochs *
      per_epoch_steps if not flags_obj.skip_eval else 0)
  if eval_offset != 0:
    eval_offset -= eval_interval
  checkpoint_interval = (
      per_epoch_steps if flags_obj.enable_checkpoint_and_export else None)
  summary_interval = per_epoch_steps if flags_obj.enable_tensorboard else None

  checkpoint_manager = tf.train.CheckpointManager(
      runnable.checkpoint,
      directory=flags_obj.model_dir,
      max_to_keep=10,
      step_counter=runnable.global_step,
      checkpoint_interval=checkpoint_interval)

  device_warmup_steps = (flags_obj.device_warmup_steps
                         if flags_obj.enable_device_warmup else 0)
  if flags_obj.enable_device_warmup:
    logging.info('Warmup for %d steps.', device_warmup_steps)

  resnet_controller = controller.Controller(
      strategy,
      runnable.train,
      runnable.evaluate,
      runnable.warmup,
      global_step=runnable.global_step,
      steps_per_loop=steps_per_loop,
      train_steps=per_epoch_steps * train_epochs,
      device_warmup_steps=device_warmup_steps,
      checkpoint_manager=checkpoint_manager,
      summary_interval=summary_interval,
      eval_steps=eval_steps,
      eval_interval=eval_interval,
      eval_offset=eval_offset)

  if flags_obj.enable_device_warmup:
    resnet_controller.warmup()

  mlp_log.mlperf_print('init_stop', None)

  profile_steps = flags_obj.profile_steps
  if profile_steps:
    profile_steps = [int(i) for i in profile_steps.split(',')]
    if profile_steps[0] < 0:
      runnable.trace_start(-1)

  time_callback.on_train_begin()
  mlp_log.mlperf_print('run_start', None)
  mlp_log.mlperf_print(
      'block_start',
      None,
      metadata={
          'first_epoch_num':
              1,
          'epoch_count':
              (flags_obj.eval_offset_epochs if flags_obj.eval_offset_epochs != 0
               else flags_obj.epochs_between_evals)
      })
  resnet_controller.train(evaluate=not flags_obj.skip_eval)
  mlp_log.mlperf_print('run_stop', None, metadata={'status': 'success'})
  time_callback.on_train_end()
  mlp_log.mlperf_print('run_final', None)

  stats = build_stats(runnable, time_callback)
  return stats


def define_imagenet_keras_flags():
  common.define_keras_flags()
  flags_core.set_defaults()
  flags.adopt_module_key_flags(common)


def main(_):
 # tf.keras.backend.set_floatx('float16')
  model_helpers.apply_clean(flags.FLAGS)
  with logger.benchmark_context(flags.FLAGS):
    stats = run(flags.FLAGS)
  logging.info('Run stats:\n%s', stats)


if __name__ == '__main__':
  logging.set_verbosity(logging.INFO)
  common.define_keras_flags()
  app.run(main)